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Introduction



Introduction

Linear models form the basis of much of statistical practice.

My objectives:

I to make you well understand the main concepts behind
linear models,

I to introduce you to the handling of linear models using R,
I to develop your critical faculties with regard to the

published works using linear models.



Our example

We will present various models on a unique data set extracted from
an old publication describing the observed survival time (in days) of
adult ticks as a function of temperature and relative humidity:

Milne, A. (1950). The ecology of the sheep tick, Ixodes ricinus L.:
microhabitat economy of the adult tick. Parasitology, 40(1-2),
14-34.



Importation of the whole data set

dtot <- read.table("DATA/Milne1950.txt", header = TRUE)
str(dtot)

## 'data.frame': 100 obs. of 3 variables:
## $ rel_hum : int 0 50 70 85 95 0 50 70 85 95 ...
## $ surv_time : int 7 7 22 15 38 9 9 23 22 48 ...
## $ temperature: int 5 5 5 5 5 5 5 5 5 5 ...
# replacement of 0% humidity by 10%
# as in the paper Wongnak et al. 2022
dtot$rel_hum[dtot$rel_hum == 0] <- 10

# add of the log10 tranformed survival time
dtot$log10_surv_time <- log10(dtot$surv_time)



Plot of data using ggplot2
ggplot(data = dtot, aes(x = rel_hum, y = surv_time,

col = temperature)) + geom_point()
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Plot of data after log transformation of the outcome
ggplot(data = dtot, aes(x = rel_hum, y = log10_surv_time,

col = temperature)) + geom_point()

1

2

25 50 75
rel_hum

lo
g1

0_
su

rv
_t

im
e

5

10

15

20

25
temperature



Add jitter
ggplot(data = dtot, aes(x = rel_hum, y = log10_surv_time,

col = temperature)) + geom_jitter(width = 2)
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Definition of basic terms

The outcome = the dependent variable = the survival time (in
days) = a continuous variable

No censoring here as the experiment was pursued to reach the death
for each tick

The explicative variables = the independent variables:

I the relative humidity (in %)
I the temperature (in Celsius degrees)

In this example the two explicative variables are controlled
(experimental study).



Reminder on simple linear regression



Impact of the temperature for mild humidity conditions

using a subset of the whole data set at a humidity level of 50%
dRH50 <- subset(dtot, rel_hum == 50); par(mar = c(4,4,0,0))
plot(log10_surv_time ~ temperature, data = dRH50, pch = 16)
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Basic concepts and fitting method



Basic concepts and fitting method
Yi = α+ βXi + εi with εi ∼ N(0, σ)

Deterministic part: linear link
Stochastic part : Gaussian model

assuming random, independent residuals εi following a Gaussian
(normal) distribution of constant variance σ2.
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The least squares estimation of parameters

In the case of this model, the maximum likelihood estimation
(maximizing Pr(Y |α, β, σ)) corresponds to the least squares
estimation minimizing SCE =

∑n
i=1 e2

i with ei = Yi− Ŷi
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Estimation of parameters using R

(m <- lm(log10_surv_time ~ temperature, data = dRH50))

##
## Call:
## lm(formula = log10_surv_time ~ temperature, data = dRH50)
##
## Coefficients:
## (Intercept) temperature
## 1.1225 -0.0224



R summary for a linear model (will be detailed later)
summary(m)

##
## Call:
## lm(formula = log10_surv_time ~ temperature, data = dRH50)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3991 -0.1127 -0.0209 0.1560 0.3443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12253 0.11411 9.84 1.1e-08 ***
## temperature -0.02239 0.00678 -3.30 0.004 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.231 on 18 degrees of freedom
## Multiple R-squared: 0.377, Adjusted R-squared: 0.342
## F-statistic: 10.9 on 1 and 18 DF, p-value: 0.00398



How to interpret the p-value associated to the regression
coefficient (slope) ?

summary(m)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1225 0.11411 9.84 1.15e-08
## temperature -0.0224 0.00678 -3.30 3.98e-03

It corresponds to the significance test of the slope with H0 the
hypothesis of null slope. So it answers to the question: “is there a
significant linear relationship between the independent variable X and
the dependent variable Y ?”



Look at the fitted model
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ temperature, data = dRH50, pch = 16)
abline(m)
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Check of use conditions



Plot of residuals against fitted values
par(mar = c(4, 4, 0, 0))
plot(residuals(m) ~ fitted(m))
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Expected residuals under the model conditions

Centered on 0, 95% within [−2σ; 2σ], constant variance, no trend.
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Quantile-quantile plot of residuals
qqnorm(residuals(m))
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Your turn to play with three other examples

Fit a simple linear model and especially look at the residuals
in the three following cases:

1. Fit a simple linear model on the same example without log
transformation of the survival time

2. Model the impact of the relative humidity on the survival
time (after log10 tranformation) at 25◦C .

3. Model the impact of the relative humidity on the survival
time (after log10 tranformation) at 19◦C , excluding data at
the driest condition.

You can use the R script “intro2linmodel.R” to help you.



Example 1 - fit of the model
mnonlog <- lm(surv_time ~ temperature, data = dRH50)
summary(mnonlog)

##
## Call:
## lm(formula = surv_time ~ temperature, data = dRH50)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.21 -2.33 -1.30 1.85 9.29
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.783 2.161 6.38 5.3e-06 ***
## temperature -0.416 0.128 -3.23 0.0046 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.38 on 18 degrees of freedom
## Multiple R-squared: 0.368, Adjusted R-squared: 0.332
## F-statistic: 10.5 on 1 and 18 DF, p-value: 0.0046



Example 1 - plot of the fitted model
par(mar = c(4, 4, 0, 0))
plot(surv_time ~ temperature, data = dRH50, pch = 16)
abline(mnonlog)

5 10 15 20 25

5
10

15
20

temperature

su
rv

_t
im

e



Example 1 - Plot of residuals

The bottleneck effect = heteroscedasticity = σ is not constant
plot(residuals(mnonlog) ~ fitted(mnonlog))

4 6 8 10 12

−
5

0
5

fitted(mnonlog)

re
si

du
al

s(
m

no
nl

og
)



Example 1 - An R variant to see the problem

Scale-Location plot
par(mar = c(4, 4, 0, 0))
plot(mnonlog, which = 3)
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Example 1 Q-Q plot of residuals

The problem is not detectable on the Q-Q plot in this example.
qqnorm(residuals(mnonlog))
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Example 2 - build and look at the data set
dT25 <- subset(dtot, temperature == 25)
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT25, pch = 16)
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Example 2 - fit of the model
mnonlin <- lm(log10_surv_time ~ rel_hum, data = dT25)
summary(mnonlin)

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum, data = dT25)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.780 -0.382 0.120 0.345 0.534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06545 0.19383 -0.34 0.74
## rel_hum 0.02068 0.00281 7.35 1.8e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.423 on 23 degrees of freedom
## Multiple R-squared: 0.702, Adjusted R-squared: 0.689
## F-statistic: 54.1 on 1 and 23 DF, p-value: 1.76e-07



Example 2 - plot of the fitted model
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT25, pch = 16)
abline(mnonlin)
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Example 2 - Plot of residuals

Trend in the residuals = residuals are not independent, in this
example due to non linearity of the relation
par(mar = c(4, 4, 0, 0))
plot(residuals(mnonlin) ~ fitted(mnonlin))
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Example 2 - An R variant helping to see the problem

par(mar = c(4, 4, 0, 0))
plot(mnonlin, which = 1)
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Example 2 - Q-Q plot of residuals

In this example the problem is also detectable on the Q-Q plot.
qqnorm(residuals(mnonlin))
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Example 3 - build and look at the data set
dT19 <- subset(dtot, temperature == 19 & rel_hum > 10)
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT19, pch = 16)
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Example 3 - fit of the model
moutlier <- lm(log10_surv_time ~ rel_hum, data = dT19)
summary(moutlier)

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum, data = dT19)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1380 -0.1377 0.0221 0.2337 0.4614
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.21571 0.37147 -3.27 0.0042 **
## rel_hum 0.03591 0.00483 7.43 6.9e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.366 on 18 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.741
## F-statistic: 55.3 on 1 and 18 DF, p-value: 6.85e-07



Example 3 - plot of the fitted model
par(mar = c(4, 4, 0, 0))
plot(log10_surv_time ~ rel_hum, data = dT19, pch = 16)
abline(moutlier)
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Example 3 - Plot of residuals

Trend in the residuals = one outlier
par(mar = c(4, 4, 0, 0))
plot(residuals(moutlier) ~ fitted(moutlier))
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Example 3 - An R variant identifying outliers

par(mar = c(4, 4, 0, 0))
plot(moutlier, which = 1)
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Example 3 - Cook’s distances: impact of outliers ?

To identify influential observations: impact of the removing of
each observation on the parameter estimates.
par(mar = c(4, 4, 0, 0))
plot(moutlier, which = 4)
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Example 3 - Q-Q plot of residuals

In this example the problem is also detectable on the Q-Q plot.
qqnorm(residuals(moutlier))
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Inference using simple linear regression



Inference using simple linear regression

Possible if your model is not invalidated by plots of residuals.

Let us go back to our example respecting the linear regression
conditions



Interpretation of the estimates with their confidence
intervals

coef(m)

## (Intercept) temperature
## 1.1225 -0.0224
confint(m)

## 2.5 % 97.5 %
## (Intercept) 0.8828 1.36228
## temperature -0.0366 -0.00814

I intercept: estimated value of Y for X = 0 (meaningful if
X = 0 has a biological meaning and stands in the range of
observed values)

I slope (regression coefficient): change in the dependent
variable corresponding to a unit change in the independent
variable



Prediction using the model
Prediction of Y0 pour X = X0 within the observed area.

BE CAREFUL: no extrapolation !
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Confidence interval on the mean predicted value

Uncertainty on the deterministic part of the model (line)
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Prediction interval = confidence interval on an indiviual
prediction

Uncertainty on the deterministic part of the model + stochastic part
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Prediction interval = confidence interval on an indiviual
prediction

Uncertainty on the deterministic part of the model + stochastic part
often approximated by Ŷ0 ± 2× σ
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Calculation of confidence and prediction intervals using R

Confidence interval
data4pred <- data.frame(temperature = 10)
predict(m, interval = "confidence", newdata = data4pred)

## fit lwr upr
## 1 0.899 0.769 1.03

Prediction interval
predict(m, interval = "prediction", newdata = data4pred)

## fit lwr upr
## 1 0.899 0.396 1.4



Goodness-of-fit measures

Interpretation of the R-squared (r2, coefficient of determination)

It corresponds to the proportion of the variance in the
dependent variable that the independent variable explains (by
the linear deterministic relation).

r2 given in % is sometimes named the percent of variance
accounted for.

The standard deviation σ is also a goodness-of-fit measure, but
that must be interpreted with regard to the order of magnitude of
Y .



R summary for the fit a linear model
summary(m)

##
## Call:
## lm(formula = log10_surv_time ~ temperature, data = dRH50)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3991 -0.1127 -0.0209 0.1560 0.3443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12253 0.11411 9.84 1.1e-08 ***
## temperature -0.02239 0.00678 -3.30 0.004 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.231 on 18 degrees of freedom
## Multiple R-squared: 0.377, Adjusted R-squared: 0.342
## F-statistic: 10.9 on 1 and 18 DF, p-value: 0.00398



A value of r 2 close to 1 does not inform you about
compliance with the use conditions of the model.

To convince you look at the four following examples sharing exactely
the same r2 value of 62%

taken from R. Tomassone et al., 1992, La régression, nouveaux
regards sur une ancienne méthode statistique.
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Your turn to use this model for inference purposes
Using the same model (m), answer the following questions:

1. At a relative humidity of 50%, what is the expected change of
the survival rate (in log10) due to an increase of the
temperature of 1◦C .

2. Traduce this change in a mutiplicative coefficient on the
survival time and in its relative diminution due to the same
increase of temperature of 1◦C .

3. Give a prediction (with its 95% confidence interval) of the
mean survival time in log scale of ticks at a relative
humidity of 50% and a temperature of 22◦C and its
traduction in the raw scale (in days).

4. Give a prediction (with its 95% confidence interval) of the
survival time of one tick exposed at a relative humidity of
50% and a temperature of 22◦C .

5. Give a prediction (with its 95% confidence interval) of the
survival time of one tick exposed at a relative humidity of
50% and a temperature of 40◦C .



Answer to question 1

At a relative humidity of 50%, what is the expected change of the
survival rate (in log10) due to an increase of the temperature
of 1◦C .
coef(m)[2]

## temperature
## -0.0224



Answer to question 2

Traduce this change in a mutiplicative coefficient on the
survival time and in its relative diminution due to the same
increase of temperature of 1◦C .

If we name st0 the initial survival time, and stc the survival time
after the change, we expect log10(stc)− log10(st0) = b with b the
regression coefficient, so log10( stcst0 ) = b so stc = 10b × st0.
# multiplication by
10^coef(m)[2]

## temperature
## 0.95
# so a relative diminution of 5%



Answer to question 3

Give a prediction (with its 95% confidence interval) of the mean
survival time in log scale of ticks at a relative humidity of 50%
and a temperature of 22◦C and its traduction in the raw scale (in
days).
data4pred <- data.frame(temperature = 22)
# prediction in log10(days)
(stinlog10 <- predict(m, interval = "confidence",

newdata = data4pred))

## fit lwr upr
## 1 0.63 0.483 0.777
# prediction in days
10^stinlog10

## fit lwr upr
## 1 4.27 3.04 5.99



Answer to question 4

Give a prediction (with its 95% confidence interval) of the survival
time of one tick exposed at a relative humidity of 50% and a
temperature of 22◦C .
data4pred <- data.frame(temperature = 22)
# prediction in log10(days)
(stinlog10 <- predict(m, interval = "prediction",

newdata = data4pred))

## fit lwr upr
## 1 0.63 0.123 1.14
# prediction in days
10^stinlog10

## fit lwr upr
## 1 4.27 1.33 13.7



Answer to question 5

Give a prediction (with its 95% confidence interval) of the survival
time of one tick exposed at a relative humidity of 50% and a
temperature of 40◦C .
# Should we do that ?
data4pred <- data.frame(temperature = 40)
predict(m, interval = "prediction", newdata = data4pred)

## fit lwr upr
## 1 0.227 -0.385 0.839
# NO !!!!!!!!!!!!!!

NO EXTRAPOLATION !

This data set does not inform you about what happens for
temperature above 25◦C !



Multiple linear regression



Basic concepts and fitting method



Modeling of the impact of both relative humidity and
temperature in non dried conditions

using a subset of the whole data set at all humidity conditions
except the driest condition.
dhum <- subset(dtot, rel_hum > 10)
ggplot(data = dhum, aes(x = rel_hum, y = log10_surv_time,
col = temperature)) + geom_jitter(width = 2)

1

2

50 60 70 80 90
rel_hum

lo
g1

0_
su

rv
_t

im
e

5

10

15

20

25
temperature



The theoretical model

Very similar to the simple linear model,

with more than one continuous independent variable (called
regressors),

so more than one regression coefficient (no more called slope).

Yi = β0 + β1X1i + β2X2i + · · ·+ βpXpi + εi

with εi ∼ N(0, σ)

Deterministic part: linear link
Stochastic part : Gaussian model

assuming random, independent residuals εi following a Gaussian
(normal) distribution of constant variance σ2.



The least squares estimation of parameters

As in the case of the simple linear model,

the maximum likelihood estimation

(maximizing Pr(Y |β0, β1, . . . , βp, σ)) still

corresponds to the least squares estimation minimizing
SCE =

∑n
i=1 e2

i with ei = Yi− Ŷi



Estimation of parameters using R

(mm <- lm(log10_surv_time ~ rel_hum + temperature, data = dhum))

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperature, data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperature
## -0.86084 0.03334 -0.00971



R summary for the fit of a multiple linear model
summary(mm)

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperature, data = dhum)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1677 -0.2040 0.0649 0.2482 0.6337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.86084 0.21090 -4.08 0.00011 ***
## rel_hum 0.03334 0.00252 13.25 < 2e-16 ***
## temperature -0.00971 0.00560 -1.73 0.08691 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.382 on 77 degrees of freedom
## Multiple R-squared: 0.699, Adjusted R-squared: 0.691
## F-statistic: 89.3 on 2 and 77 DF, p-value: <2e-16



How to interpret the p-values associated to each regression
coefficient ?

summary(mm)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.86084 0.21090 -4.08 1.08e-04
## rel_hum 0.03334 0.00252 13.25 1.46e-21
## temperature -0.00971 0.00560 -1.73 8.69e-02

Each p-value corresponds to the significance test of each regression
coefficient with H0 the null hypothesis of each coefficient, the other ones
being kept in the model. So it answers to the question: “is there a
significant linear relationship between the regressor Xi and the
outcome Y when the other regressors Xj with j 6= i have already
been taken into account?”

In this example we see an significant impact of the relative humidity on
the survival rate, but the add of the temperature as a second regressor
does not significantly improve the model.



Another equivalent way to compare two nested models
using an F test

mm <- lm(log10_surv_time ~ rel_hum + temperature, data = dhum)
mrel_hum <- lm(log10_surv_time ~ rel_hum, data = dhum)
anova(mm, mrel_hum)

## Analysis of Variance Table
##
## Model 1: log10_surv_time ~ rel_hum + temperature
## Model 2: log10_surv_time ~ rel_hum
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 77 11.2
## 2 78 11.6 -1 -0.438 3.01 0.087 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The add of the temperature in the model does not significantly improve
the fit.



Another way to compare two nested models using an F
test - impact of the relative humidity

mm <- lm(log10_surv_time ~ rel_hum + temperature, data = dhum)
mtemperature <- lm(log10_surv_time ~ temperature, data = dhum)
anova(mm, mtemperature)

## Analysis of Variance Table
##
## Model 1: log10_surv_time ~ rel_hum + temperature
## Model 2: log10_surv_time ~ temperature
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 77 11.2
## 2 78 36.8 -1 -25.6 176 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The add of the relative humidity in the model significantly improves the fit.



No more possible to simply look at the fit of the model

It is one of the difficulties encountered in the
process of check of the adequation of the model to
the data !



Check of use conditions



Plot of residuals against fitted values as in simple linear
regression

par(mar = c(4, 4, 0, 0))
plot(residuals(mm) ~ fitted(mm))
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Quantile-quantile plot of residuals as in simple linear
regression

qqnorm(residuals(mm))
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Add a plot of residuals against each independent variable

Especially useful to detect violation of the hypothesis of linear
relationships (the case for the relative humidity in this example !)
par(mar = c(4, 4, 0, 0), mfrow = c(1,2))
plot(residuals(mm) ~ rel_hum, data = dhum)
plot(residuals(mm) ~ temperature, data = dhum)
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Go back to the data

We could have anticipated this problem, and it would have been
worse if the data at 10% have been kept in the data set.
ggplot(data = dtot, aes(x = rel_hum, y = log10_surv_time,
col = temperature)) + geom_jitter(width = 2)
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Polynomial models: a solution ?

One simple way to take into account a non linearity in the
relationship between the dependent variable and one (or more)
regressor is to use polynomial models.
(mm2 <- lm(log10_surv_time ~ rel_hum + I(rel_hum^2) +

temperature, data = dhum))

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2) + temperature,
## data = dhum)
##
## Coefficients:
## (Intercept) rel_hum I(rel_hum^2) temperature
## 2.463772 -0.064501 0.000679 -0.009712

This polynomial model can be fitted by least squares: it is a linear model with
just one more independent variable (the square of the relative humidity).



Your turn to handle multiple regression

Using the same data set dhum that excludes the driest condition:

1. Look at the residual plots obtained with this new model. Is the
problem due to non linearity solved ?

2. Look at the summary of the new model mm2rel_hum and try to
interpret the p-values.

Using the whole data set dtot (with all conditions):

3. Fit a polynomial model of second order without taking into
account the impact of the temperature.

4. Look at the summary and at the residuals.
5. Represent the fitted model on the data and question the

biological relevance of this model. For that question you should
define a new data frame with evenly spaced values within the range
of tested conditions of relative humidity and use the predict()
function directly on this new data set.



Answer to question 1
No more trend on the residual plot against the relative humidity.
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Answer to question 2
Significant improvement of the fit adding the square relative
humidity, but no significant improvement adding the temperature.
summary(mm2)

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2) + temperature,
## data = dhum)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0802 -0.1873 0.0635 0.2185 0.4909
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.463772 0.904671 2.72 0.00801 **
## rel_hum -0.064501 0.026104 -2.47 0.01572 *
## I(rel_hum^2) 0.000679 0.000180 3.76 0.00033 ***
## temperature -0.009712 0.005176 -1.88 0.06444 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.353 on 76 degrees of freedom
## Multiple R-squared: 0.746, Adjusted R-squared: 0.736
## F-statistic: 74.5 on 3 and 76 DF, p-value: <2e-16



Answer to question 3

(m2tot <- lm(log10_surv_time ~ rel_hum + I(rel_hum^2), data = dtot))

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2), data = dtot)
##
## Coefficients:
## (Intercept) rel_hum I(rel_hum^2)
## 0.929364 -0.024727 0.000409



Answer to question 4 - summary
summary(m2tot)

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + I(rel_hum^2), data = dtot)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0808 -0.2374 0.0636 0.2313 0.6077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.29e-01 1.09e-01 8.55 1.8e-13 ***
## rel_hum -2.47e-02 4.87e-03 -5.08 1.8e-06 ***
## I(rel_hum^2) 4.09e-04 4.58e-05 8.92 2.9e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.34 on 97 degrees of freedom
## Multiple R-squared: 0.767, Adjusted R-squared: 0.762
## F-statistic: 159 on 2 and 97 DF, p-value: <2e-16



Answer to question 4 - residuals
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Answer to question 5 - the R code

plot(log10_surv_time ~ rel_hum, data = dtot, pch = 16)
data4pred <- data.frame(rel_hum = seq(10, 95, length.out = 50))
pred <- predict(mm2tot, newdata = data4pred)
lines(pred ~ data4pred$rel_hum, lwd = 2)



Answer to question 5 - the plot

Is a minimum of the survival time between 20 and 40 % of humidity
expected ?

20 40 60 80

0.
5

1.
5

2.
5

rel_hum

lo
g1

0_
su

rv
_t

im
e



The case of a qualitative independent variables



The ANOVA 1 linear model



The ANOVA 1 linear model

Some of the independent variables may be qualitative (e.g. the
sex) or may be transformed in a qualitative variable (often
named a factor) to cope with violation of the linearity condition.

Imagine we want to model the impact of the relative humidity
on the survival time (in log10) by considering it as a qualitative
variable with 5 conditions, neglecting the potential impact of the
temperature (for the moment).
# Define the qualitative variable
dtot$rel_humF <- as.factor(dtot$rel_hum)
levels(dtot$rel_humF)

## [1] "10" "50" "70" "85" "95"



Plot of data using boxplots
par(mar = c(4, 4, 1, 1))
plot(log10_surv_time ~ rel_humF, data = dtot)
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Formalization of the ANOVA 1 linear model

I Classical formalization: Yij = µ+ αi + εij with εij ∼ N(0, σ)
with

∑
αi = 0

I Formalization using p − 1 dummy variables X1 to Xp−1
coding for the membership of each observation to the p
groups except the reference one:
Yk = β0 + β1X1,k + · · ·+ βp−1Xp−1,k + εk with εk ∼ N(0, σ)

I Link between both formalizations:
I mean of group 1 = µ+ α1 = β0
I mean of group 2 = µ+ α2 = β0 + β1
I mean of group i = µ+ αi = β0 + βi−1

So each coefficient of the linear model corresponds to the
differences of the mean in each class to the mean in the
reference class.



Fit a linear model

(manova1 <- lm(log10_surv_time ~ rel_humF, data = dtot))

##
## Call:
## lm(formula = log10_surv_time ~ rel_humF, data = dtot)
##
## Coefficients:
## (Intercept) rel_humF50 rel_humF70 rel_humF85 rel_humF95
## 0.7084 0.0783 0.4359 1.0107 1.6188



Performs the classical one-way analysis of variance

anova(manova1)

## Analysis of Variance Table
##
## Response: log10_surv_time
## Df Sum Sq Mean Sq F value Pr(>F)
## rel_humF 4 37.2 9.31 81 <2e-16 ***
## Residuals 95 10.9 0.11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected in this example, it shows a significant effect of the relative
humidity on the survival time (in log10)



Check the use conditions

par(mar = c(4, 4, 2, 2), mfrow = c(1,2))
plot(residuals(manova1) ~ fitted(manova1))
qqnorm(residuals(manova1))
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Interpret the coefficients

# Observed means
tapply(dtot$log10_surv_time, dtot$rel_humF, mean)

## 10 50 70 85 95
## 0.708 0.787 1.144 1.719 2.327
# Coefficients with their 95% confidence intervals
coef(manova1)

## (Intercept) rel_humF50 rel_humF70 rel_humF85 rel_humF95
## 0.7084 0.0783 0.4359 1.0107 1.6188

Each one corresponds to the difference of the mean in each class to
the mean in the reference class (first level of the factor, by default
with alphabetic ordering of the levels)



Interpret the confidence intervals of the coefficients

confint(manova1)

## 2.5 % 97.5 %
## (Intercept) 0.558 0.859
## rel_humF50 -0.135 0.291
## rel_humF70 0.223 0.649
## rel_humF85 0.798 1.224
## rel_humF95 1.406 1.832



Forest plot to vizualise the coefficients with their
confidence intervals

library(sjPlot)
plot_model(manova1, type = "est")
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The ANOVA 2 linear model



The ANOVA 2 linear model

Now imagine we want to add in this model the impact of the
temperature, also transformed in a qualitative variable with
two modalities, cold (< 15◦C) or hot.
dtot$temperatureF <- as.factor(ifelse(dtot$temperature < 15,

"cold", "hot"))
# Look at the experimental design
xtabs(data = dtot, ~ rel_humF + temperatureF)

## temperatureF
## rel_humF cold hot
## 10 10 10
## 50 10 10
## 70 10 10
## 85 10 10
## 95 10 10



An interaction plot - using ggplot2
ggplot(data = dtot, aes(x = rel_humF, y = log10_surv_time,

col = temperatureF)) + geom_point() +
stat_summary(fun = mean, geom = "line", aes(group = temperatureF))
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An interaction plot - using graphics
par(mar = c(4, 4, 1, 1))
within(dtot, interaction.plot(rel_humF, temperatureF, log10_surv_time))
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An second version of the interaction plot - using graphics
par(mar = c(4, 4, 1, 1))
within(dtot, interaction.plot(temperatureF, rel_humF, log10_surv_time))
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ANOVA 2 models without or with interaction between two
factors A and B

Two factors A and B may each have an effect on the dependent
variable without interacting. The effects are then said additive.

The effect of A does not depend on the modality of B, and vice
versa.

Yij = µ+ αi + βj + εij with εij ∼ N(0, σ)

Two factors may interact. The model is no more additive. It
incorporates interaction terms γij .

The effect of A depends on the modality of B, and vice versa.

Yij = µ+ αi + βj + γij + εij with εij ∼ N(0, σ)

The choice between both models must be guided by the prior
biological knowledge and the data observation.



Fit the ANOVA 2 model without interaction

(manova2 <- lm(log10_surv_time ~ rel_humF + temperatureF,
data = dtot))

##
## Call:
## lm(formula = log10_surv_time ~ rel_humF + temperatureF, data = dtot)
##
## Coefficients:
## (Intercept) rel_humF50 rel_humF70 rel_humF85
## 0.7771 0.0783 0.4359 1.0107
## rel_humF95 temperatureFhot
## 1.6188 -0.1373

Ex. of predicted mean at 70% humidity and hot temperature: 0.777 + 0.436 -
0.137



Interpretation of the coefficients

plot_model(manova2)
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Fit the ANOVA 2 model with interaction
(manova2int <- lm(log10_surv_time ~ rel_humF + temperatureF +

rel_humF:temperatureF, data = dtot))

##
## Call:
## lm(formula = log10_surv_time ~ rel_humF + temperatureF + rel_humF:temperatureF,
## data = dtot)
##
## Coefficients:
## (Intercept) rel_humF50
## 0.838713 0.089170
## rel_humF70 rel_humF85
## 0.435406 0.824212
## rel_humF95 temperatureFhot
## 1.486764 -0.260552
## rel_humF50:temperatureFhot rel_humF70:temperatureFhot
## -0.021829 0.000976
## rel_humF85:temperatureFhot rel_humF95:temperatureFhot
## 0.373032 0.264005

Ex. of predicted mean at 70% humidity and hot temperature: 0.839 + 0.435 - 0.261
+ 0.001



Interpretation of the coefficients

plot_model(manova2int)
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Comparison of models with and without interaction

Those two nested models can be compared using an F test.
anova(manova2int, manova2)

## Analysis of Variance Table
##
## Model 1: log10_surv_time ~ rel_humF + temperatureF + rel_humF:temperatureF
## Model 2: log10_surv_time ~ rel_humF + temperatureF
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 90 9.78
## 2 94 10.45 -4 -0.667 1.53 0.2

On this example the interaction is not significant (but it should not be the only reason
to make you choose the simpler model).



A linear model with both qualitative and quantitative
independent variables



A linear model with both qualitative and quantitative
independent variables

Imagine we want to model the impact on the survival time (in log10)

of the relative humidity considered as a quantitative variable

and the temperature as a qualitative variable with 2 conditions,
cold (< 15◦C) or hot,

excluding data at the driest condition.
dhum$temperatureF <- as.factor(ifelse(dhum$temperature < 15,

"cold", "hot"))



Look at the data
ggplot(data = dhum, aes(x = rel_hum, y = log10_surv_time,

col = temperatureF)) + geom_jitter(width = 1)
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ANCOVA models without or with interaction between a
factor A and a covariate X

The model without interaction

The slope β does not depend on the modality of A.

Yij = µ+ αi + β × Xij + εij with εij ∼ N(0, σ)

The model with interaction

Yij = µ+ αi + βi × Xij + εij with εij ∼ N(0, σ)

The slopes βi are different

The choice between both models must be guided by the prior
biological knowledge and the data observation.



Fit the ANCOVA model without interaction

(mancova <- lm(log10_surv_time ~ rel_hum + temperatureF,
data = dhum))

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperatureF, data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperatureFhot
## -0.9533 0.0333 -0.1065

Note that the intercept has no biological in this case (0 not within the range of
studied X values).

Ex. of predicted mean at 65% humidity and hot temperature:
−0.9533 + 0.0333 × 65 − 0.1065



Interpretation of the coefficients

plot_model(mancova)
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Standardization of the regression coefficients to help their
interpretation

The regression coefficients β (or βi) are dependent of the
order of magnitude of the covariate X . To make them
comparable to each other and to the coefficients corresponding to
factors, it is recommended to divide them by 2× SDX with SDX the
standard deviation of the X values.

See Gelman A (2008) “Scaling regression inputs by dividing by two
standard deviations.” Statistics in Medicine 27: 2865-2873. for
theoretical justification.

It can be easily done using the argument type of the
plot_model()function as below.
plot_model(mancova, type = "std2")

http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf
http://www.stat.columbia.edu/~gelman/research/published/standardizing7.pdf


Interpretation of standardized coefficients of the ANCOVA
model without interaction

plot_model(mancova, type = "std2")

temperatureF [hot]

rel hum

−1 −0.5 0 0.5 1 1.5 2
Estimates

log10_surv_time



Fit the ANCOVA model with interaction

(mancovaint <- lm(log10_surv_time ~ rel_hum + temperatureF +
rel_hum:temperatureF, data = dhum))

##
## Call:
## lm(formula = log10_surv_time ~ rel_hum + temperatureF + rel_hum:temperatureF,
## data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperatureFhot
## -0.64182 0.02919 -0.72941
## rel_hum:temperatureFhot
## 0.00831

Ex. of predicted mean at 65% humidity and cold temperature: −0.6418 + 0.0292 × 65

And for predicted mean at 65% humidity and cold temperature ?



Interpretation of standardized coefficients of the ANCOVA
model with interaction

plot_model(mancovaint, type = "std2")
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Your turn to handle qualitative and quantitative
independent variables

Using those two fitted models (mancova and mancovaint),

1. Look at the residuals for each model.
2. Predict the survival time of one tick exposed at 65% humidity and at

a temperature between 15◦C and 25◦C with its 95% confidence
interval, using the predict() function with each model.

3. Plot each model on the data the abline() function.



Answer to question 1 - model without interaction
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The main observed trend is the one due to non linearity of the relation between
the outcome and the relative humidity.



Answer to question 1 - model with interaction
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As previously the main observed trend is the one due to non linearity of the
relation between the outcome and the relative humidity.



Answer to question 2

data4pred <- data.frame(rel_hum = 65, temperatureF = "hot")

# Prediction using the model without interaction
predict(mancova, newdata = data4pred, interval = "prediction")

## fit lwr upr
## 1 1.11 0.33 1.89
# Prediction using the model with interaction
predict(mancovaint, newdata = data4pred, interval = "prediction")

## fit lwr upr
## 1 1.07 0.295 1.84



Answer to question 3 - model without interaction
a <- coef(mancova); par(mar = c(4, 4, 1, 1))
plot(log10_surv_time ~ rel_hum , data = dhum,

col = ifelse(temperatureF == "cold", "blue", "red"))
abline(a = a[1], b = a[2],lwd = 2, col = "blue")
abline(a = a[1] + a[3], b = a[2], lwd = 2, col = "red")
legend("topleft", fill = c("blue", "red"),

legend = c("cold", "hot"), bty = "n")
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Answer to question 3 - model with interaction
ai <- coef(mancovaint); par(mar = c(4, 4, 1, 1))
plot(log10_surv_time ~ rel_hum , data = dhum,

col = ifelse(temperatureF == "cold", "blue", "red"))
abline(a = ai[1], b = ai[2],lwd = 2, col = "blue")
abline(a = ai[1] + ai[3], b = ai[2] + ai[4], lwd = 2, col = "red")
legend("topleft", fill = c("blue", "red"),

legend = c("cold", "hot"), bty = "n")
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Extensions of the Gaussian linear model



More complex linear models

Now you have all the lego pieces to build more complex
linear models.
And you have the basis to understand the various
extensions of the linear model.



Non linear regression

If the model is a non linear function of the parameters.

In our example, if you want to model the non linear relationship
between the survival time (in log) and the relative humidity using a
more realistic model than the second order polynomial one.



Logistic regression

Logistic regression (special case of the Generalized Linear Model -
GLM) is used when the outcome is no more continuous, but is a
binary outome.

In our example, if you want the outcome is: survival or not at a
specific time.

Logistic regression is very often used to identify risk factors, for
example with the outcome being the presence or not of a disease in
farms.



Mixed models

Mixed models are models taking into account random effects of
random factors (6= deterministic effects of fixed factors),

such as farm effects, when there is more than one observation per
farm,

or animal effect, when there is more than one observation per
animal, . . .



Survival models

Our example was a very specific one as the survival time was known
for all the individuals.

More classically survival data include censored data
(e.g. individuals that are not dead at the end of the study: their
survival time is right censored, known to be above a value).

Moreover, the distribution of the survival times is not necessarily
lognormal.

Those problems can be taken into account using a
semi-parametric approach (Cox model) or a parametric
approach (see Wongnak et al. 2022 on our example).
Wongnak, P., et al. (2022). A hierarchical Bayesian approach for incorporating expert opinions into parametric
survival models: a case study of female Ixodes ricinus ticks exposed to various temperature and relative humidity
conditions. Ecological Modelling, 464, 109821.



Conclusion



Conclusion

Next time we will continue our discovery of linear models and their
extensions by addressing

I the strategy to build models (which independent variables to
incorporate),

I the understanding of their coefficients,
I and some limits of the approach
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