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What is a probability ?

One word,
at least two definitions.
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Frequentist view of probability

In a frequentist perspective, the probability of an event is defined
as the fraction of times that the event occurs in a very large
number of trials.
Probability of being a black sheep ?
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Bayesian view of probability

In a bayesian prespective, the probability is seen as a degree of
belief, a measure of uncertainty.

Probability of rain tomorrow ?
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What is a model ?

A model
relates observed data Y
to a set of unknown parameters θ,
with the possible inclusion of fixed, known covariates X .
It is classically divided in two parts,

the deterministic one M(X , θ),

and the stochastic one (error model)

Example : the gaussian regression model
Y = M(X , θ) + ε with ε ∼ N(0, σ)
A model may also be seen as a data generating process.
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What is inference ?

Inference generally implies the fit of the model to observed data.
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Search of the best fit

Different criteria, such as maximum likelihood (maxθ(P(Y | θ))),
may be used to choose the best fit values for the model parameters.
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Generalization to population

Inference also implies generalization of a result from a sample to
population, and the calculation of uncertainty in the estimated
parameters, especially uncertainty due to sampling error.

Sampling 

Results observed 

on a sample 

Conclusion on 

the population 

Statistical inference 

A sample 
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A very simple example

Estimation of a survival rate (probability to survive) for studied
organisms in fixed conditions
(data : y = 24 survivals among n = 100 organisms)
Model :

no deterministic part

no covariate

stochastic part : y ∼ binomial(p, n)

This model is characterized by only one parameter (p).
In the following, for our purpose to remain general, we will
continue to name θ the vector of model parameters.
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Point estimate of θ : θ̂

frequentist framework

θ is assumed fixed but unknown

It is estimated by one of the following methods :

moment matching

maximum likelihood (maxθ(P(Y | θ)))

sum of squared deviations minimization

(Different methods may lead to the same estimation in some
cases).
In our example, the estimated survival rate is 24

100 = 0.24
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Interval estimate of θ

The calculation of a confidence interval (generally a 95%
interval)
is based on imagining repeated sampling from the model :

Definition of a confidence interval

If we repeatedly obtained samples of size n from the population and
constructed a 95% confidence interval for each, we could expect
95% of the intervals to contain the true value of the parameter.

In average, when we calculate 95% confidence intervals, 1 out of
20 does not contain the true value of the parameter we want to
estimate.
In our example, the 95% confidence interval of the survival rate is
[0.16;0.34]
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Hypothesis test concerning θ

Ex. : comparaison of the survival rate in a contaminated medium
to the one observed in the control θ = θ0 ?
Calculation, under H0 (θ − θ0 = 0),
of the p-value

p-value = P(|θ̂ − θ0| > |θ̂ − θ0|obs |H0)

p-value definition

Assuming the null hypothesis true, probability (in the frequentist
meaning, imagining the repeated sampling) to obtain an estimated
difference greater that the one observed on the sample.

if p-value < α, H0 is rejected
(generally α = 5%)
and the difference is said to be significant.
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Common abusive interpretation of a p-value

We should not accept the null hypothesis (H0 : θ − θ0 = 0) when
p-value > α without taking into account type II error (β risk).
A difference may be non significant due to lack of power of
the test,
and power/sample size calculation requires the prior definition of
the minimal difference you want to be able to detect (not often
done).

SO BE CAREFUL!

An hypothesis test does generally not allow us to accept H0.
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Abusive interpretation of p-values while defining NOECs

This misinterpretation of p-values causes many problems in the use
of the NOEC as a toxicity threshold (e.g. the less data are
available, the higher the estimated value of the threshold)
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Bayesian estimation of θ

Bayesian framework

θ is supposed uncertain, and its uncertainty characterized by a
probability distribution (subjective meaning of a probability, degree
of belief)

Prior distribution : P(θ) more or less informative

Posterior distribution : P(θ|Y )
calculated using Bayes theorem :
from the prior distribution and the likelihood function P(Y |θ)

P(θ|Y ) = P(Y |θ)×P(θ)
P(Y ) ∝ P(Y |θ)× P(θ)
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Bayesian inference

Conclusion on on 

the population Bayesian inference 

A sample from the 

population 

+ 

A prior 

distribution 

A posterior 

distribution 

The posterior distribution = 
the conditional distribution 
of the unknown 
parameters given the 
observed data 
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Use of the posterior distribution for parameter estimation

Point estimate :
mean, median or mode of the posterior distribution

Interval estimate :
definition of a credible interval (or bayesian confidence
interval)
from posterior distribution quantiles (2.5% and 97.5%
quantiles for a 95% credible interval).
Such an interval is easier to interpret than a frequentist
confidence interval : the probability that the parameter lies in
a 95% credible interval is 95%.

Hypothesis test :
It is no more necessary to calculate any p-value : one can
make decisions from posterior distributions.
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Example : bayesian estimation of a survival rate

likelihood family function:
binomial(p, n)

data : y = 24 survivals
out of n =100

prior distribution :
uniform(0, 1) = beta(1, 1)
non informative

posterior distribution
(analytically known in
that simple case) :
beta(y + α, n − y + β)
here beta(y + 1, n− y + 1)
= beta(25, 77)
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point estimate : 0.24

95% credible interval :
[0.17; 0.33]
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REMEMBER !

Frequentist framework

θ is supposed fixed but unknown
Parameter inference only uses observed data
Confidence intervals are defined imagining repeated sampling
from the model, the probability being associated to the relative
frequency of occurence of an outcome.

Bayesian framework

θ is considered as a random variable, associated to a
probability distribution, in the subjective meaning of a
probability (degree of belief)
Parameter inference uses both observed data and a prior
information (prior distribution)
Credible intervals are defined from the posterior distribution,
and can be easily interpreted : 95% is the probability that a
parameter lies in a 95% credible interval.
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Analytical calculation of the posterior distribution

P(θ|Y ) = P(Y |θ)×P(θ)
P(Y ) ∝ P(Y |θ)× P(θ)

This calculation is often tricky.
An analytical result exists only in some cases
⇒ strong limitation of the use of Bayesian framework.
For a long time, its use has been limited to simple cases.
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Estimation of the posterior distribution by numerical
simulations

Markov chain Monte Carlo (MCMC) methods are a class of
algorithms for sampling from probability distributions based on
constructing a Markov chain that has the desired distribution as its
equilibrium distribution (in Bayesian inference, the posterior
distribution).

Markov Chain (A. Markov) Monte Carlo (S.Ulam and J. Von Neumann)
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MCMC algorithms

Objective of MCMC algorithms 
in Bayesian inference : 
to draw a random sample that 
converges to the posterior 
distribution (in a distribution 
meaning) 
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MCMC simulations
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MCMC simulations
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Posterior distribution characterization from MCMC
simulations
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Algorithms and software

Algorithms

Metropolis - Hasting algorithm published in 1953 by N.
Metropolis and generalized in 1970 by W.K. Hastings
Gibbs sampling algorithm published in 1984 par S. Geman et
D. Geman (special case of Metropolis - Hasting algorithm,
easier to implement)

BUGS project (since 1989)
Bayesian inference Using Gibbs Sampling
Flexible tools facilitating the implementation of Bayesian
inference with any user-supplied models, using MCMC
algorithms
Main tools :

Winbugs
Openbugs
JAGS
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Central website of the BUGS project

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Use of Bayesian inference in last decades

Search of papers containing the word Bayesian in their title (ISI
Web of knowledge)
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How to choose priors ?

A prior may be more or less informative depending on what you
know before looking at the data
Two main questions :

Range of possible values for each model parameter ?

Shape of the distribution of each parameter on its
range ?
Ex. of a parameter k varying on the range [10−4, 1]

k ∼ Unif (10−4, 1) implies that
Pr(k ∈ [10−2, 1]) = 100× Pr(k ∈ [10−4, 10−2])

log10(k) ∼ Unif (−4, 0) implies that
Pr(k ∈ [10−2, 1]) = Pr(k ∈ [10−4, 10−2])
In such a case, this second choice is generally more acceptable
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Impact of the shape of priors : illustration

Visualization of probabilities :
Pr(k ∈ [10−4, 10−2]) and Pr(k ∈ [10−2, 1])
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Some advices to choose priors

for a non-informative or vaguely informative distribution
a large uniform distribution can generally be used

directly on the parameter if its order of magnitude is known
on the log-transformed parameter if its order of magnitude is
unknown

for an informative distribution
a distribution with an infinite support is preferable, as the
posterior distribution is constrained by the prior support (e.g.
a normal distribution on the parameter, log-transformed or
not, truncated if necessary)

The prior is what you know before making the experiment.
So never use observed data in order to define priors. But you may
use the experimental design (e.g. values of tested concentrations).
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Example of definition of priors from tested concentration

Set of tested concentrations: 0.18, 0.73, 1.82, 2.9 and 7.
As the range between the minimum (Cmin) and the maximum
(Cmax) is large, we may log10-transform these values:
-0.745 -0.137 0.260 0.462 0.845
and assume a normal distribution for log10(EC50) centered on
Cmin+Cmax

2 with a probability of 95% to lie between (Cmin) and
(Cmax).

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log10(EC50)

D
en

si
ty

tested concentrations normal distribution

mean ± 2 × SD

M.L. Delignette-Muller Bayesian inference



Concepts
Methods

Applications

MCMCs and the BUGS project
The choice of priors
The use of posteriors

Posterior check of priors

comparison priors/posteriors
numerical and/or graphical comparison of priors and posteriors
in order to check that the priors are not too informative, (do
not constraint too much the posteriors).

sensitivity analysis to prior choice
repeating the inference by modifying priors in order to check
the robustness of results to choices concerning priors
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Comparison of priors and posteriors (4p-loglogistic model
with Daphnia magna - chlordan growth data)

Marginal prior distributions of parameters

2.5% 25% 50% 75% 97.5%

c 0.1106 1.299 2.4986 3.721 4.862

d 0.1289 1.250 2.4764 3.756 4.864

log10b -1.9016 -0.944 0.0167 1.037 1.904

log10e -0.7313 -0.217 0.0531 0.318 0.851

sigma 0.0465 0.482 0.9810 1.468 1.960

Marginal posterior distributions of parameters
2.5% 25% 50% 75% 97.5%

c 3.0738 3.1609 3.200 3.237 3.303

d 4.0863 4.1128 4.126 4.139 4.165

log10b 0.7236 0.8905 1.037 1.298 1.865

log10e 0.2667 0.2835 0.302 0.323 0.358

sigma 0.0832 0.0956 0.103 0.112 0.133
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Visual comparison of priors and posteriors
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Joint posterior distribution of parameters
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Prediction using point estimates of parameters

predicted growth curve (using median of posteriors)
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Predictions with credibility intervals
(by simulations in the joint posterior distribution)

predicted growth curve with 95% crediblity intervals for each
concentration compared to observed values
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Another representation for predictive checking

95% crediblity intervals (CIs) against observed values:
95% CIs are expected to contain 95% of the observations.
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Comparison of models

Comparison of two models of different complexities:
example of log-logistic models with 4 or 3 parameters
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DIC : Deviance Information Criterion

Information criteria commonly used to compare fits of two models:
Deviance penalized by model complexity,
Deviance : D(Y , θ) = −2 ∗ log(P(Y |θ))
DIC : DIC = D(Y , θ) + 2 ∗ pD with pD = D(Y , θ)− D(Y , θ)
Generalization of the Akaike criterion (AIC = D(Y , θ̂) + 2 ∗ npar ),
especially suited to compare hierarchical models.
The model with the smaller DIC is prefered.
Calculation of DIC3p - DIC4p with rjags on the example

> diffdic(DIC3p,DIC4p)

Difference: 31.8

Sample standard error: 14.5

The model with 4 parameters would be prefered.
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When to use Bayesian inference ?

Why make simple when we can complexify ?
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Incorporation of prior information

A prior information is often available, which may be very useful,
especially when data are sparse.

prior biological knowledge of parameters of biologically based
models

prior knowledge from previous experiments

When experimental data are insufficient to estimate all the model
parameters, it seems better to define a prior for each parameter
(according to its prior knowledge) that to arbitrarily fix some of
them.
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Fitting otherwise intractable models

Inference with complex models is often easier within a Bayesian
framework
We often use Bayesian inference just to meet our needs, not out of
pure ideology
Bayesian inference is of special interest for

models with latent variables

hierarchical models

non gaussian error models

non-linear models
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An example in ecotoxicology

Fit of a non-linear model to survival data, the same organisms
being followed over time.
The deterministic part of the model links the survival rate to the
time.
Some difficulties

non-linearity of the model

non gaussian error model (quantal variable - binomial
distribution)

dependence of the successive measurements (conditional
binomial model or equivalent multinomial model)

It is much simpler to implement such a model using one of the
BUGS software than to implement it by maximum likelihood.
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Use of the posterior distribution to transfer uncertainty in
quantitative risk assessment

What is known before inference.

Exposure-response model

Prior distribution 

of parameters
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Use of the posterior distribution to transfer uncertainty in
quantitative risk assessment

What is infered from data (and prior knowledge).

Exposure-response model
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Use of the posterior distribution to transfer uncertainty in
quantitative risk assessment

How we can use the posterior distribution to quantify any risk
indicator with its uncertainty using Monte Carlo simulations.
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The end of an old quarrel ?

Is the old quarrel that divided frequentist and Bayesian statisticians
over ?
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Conclusion by Bradley Efron

19th Century science was broadly Bayesian in its
statistical methodology, while frequentism dominated
20th Century scientific practice. This brings up a pointed
question: which philosophy will predominate in the 21st
Century? One thing is already clear: statistical inference
will pay an increased role in scientific progress as
scientists attack bigger, messier problems in biology,
medicine, neuroscience, the environment, and other fields
that have resisted traditional deterministic analyses. A
combination of frequentist and Bayesian thinking will be
needed to deal with the massive data sets scientists are
now bringing us.
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