Bayesian inference with **JAGS** and rjags

M. L. Delignette-Muller VetAgro Sup - LBBE

September 21, 2021

< 17 b

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Clostridium example

Modeling of the dose-response curve related to the ingestion of Clostridium perfringens.

Deterministic part of the model, probability that the host gets sick:

$$p=1-(1-r)^{dose}$$

with *dose* le number of ingested cells

Stochastic part of the model, number of sick hosts Nsick for N exposed hosts :

Nsick ~ Binomial(
$$n = N, p = 1 - (1 - r)^{dose}$$
)

イロト イポト イヨト イヨト

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Formalization of a model using a DAG - Directed Acyclic Graph

What is a DAG ?

- a directed graph

 (all the links are directed)
- without cycles (loops) (from each node, and following the links, it is impossible to return to this node)
- that we use in Bayesian inference to represent conditional dependencies between nodes.

(you can see a DAG as a mecanistic description of how output data could be used simulated from input data.)

イロト イヨト イヨト イヨト

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

DAG formalism

Nodes

- covariable (rectangle)
- variable (ellipse)
 observed variable, latent variable or intermediate variable
 Variables corresponding to output data are sometimes shaded

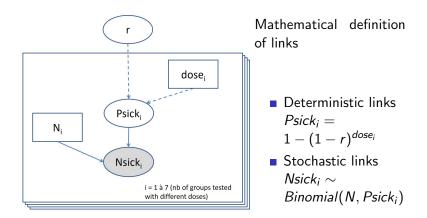
Links

- deterministic link (or logical link dashed arrow link that could be omitted by writing the model more synthetically)
- stochastic link (solid line arrow essential link, that cannot be omitted)

< ロ > < 同 > < 三 > < 三 >

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

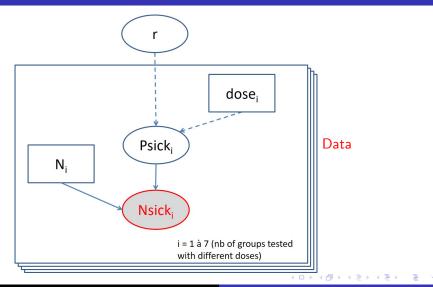
DAG of the model on our example



イロト イヨト イヨト イヨト

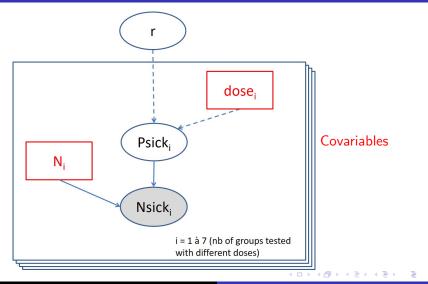
Directed Acyclic Graph (DAG) the BUGS language Coding of the model

DAG of the model - data (likelihood)



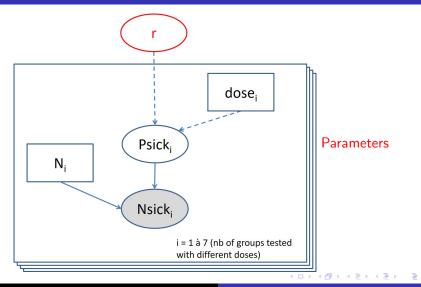
Directed Acyclic Graph (DAG) the BUGS language Coding of the model

DAG of the model - covariables (explicative variables)



Directed Acyclic Graph (DAG) the BUGS language Coding of the model

DAG of the model - parameters (to estimate)



Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Prior information

In this example, we will assume that from prior information about the unique parameter it is reasonable to define a uniform prior distribution between -15 and -5 on $log_{10}(r)$,

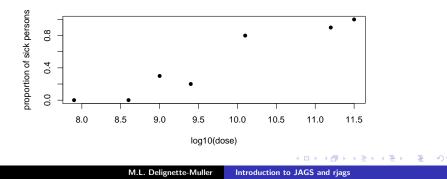
< ロ > < 同 > < 三 > < 三 >

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Data related to our example

Number of sick persons $Nsick_i$ for each group of N_i persons exposed at the dose $dose_i$

```
> plot(Nsick/N ~ doselog10, data = d, pch = 16,
+ xlab = "log10(dose)", ylab = "proportion of sick persons")
```



Directed Acyclic Graph (DAG) the BUGS language Coding of the model

The BUGS project (since 1989)

Bayesian inference Using Gibbs Sampling Development and provision of flexible software to implement Bayesian inference on complex models using MCMC. Some available tools :

- WinBUGS and OpenBUGS
- JAGS (Just Another Gibbs sampler Martyn Plummer)
- Stan and Nimble (new algorithms added to MCMC, that are more efficient for some model families, but may also be inefficient for others)
- RevBayes (for phylogeny)
- several other tools for specific model families

< ロ > < 同 > < 三 > < 三 >

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Evolution of the number of PubMed citations with **Bayesian** in the title from the beginning of the project

Bayesian[Title]			×	Search
Advanced Create alert Create RSS				
🞏 Filters 📶 Timeline •	Sorted by: Best match Display options			
		Save	Email	Send to
13,389 results				
L Reset				
				ađ
and more than both more and and more and more difference and field more stars and local both both only a	1989			2020
		< □		

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Coding of a model in the BUGS language

A declarative language

(the order of the command lines does not matter) that looks like ${\bf R}$

Declaration of a deterministic node

node <- fonction(some other nodes)</pre>

Declaration of a stochastic node

including input nodes,

i.e. parameters stochastically defined by their prior

node ~ distribution(optionally some other nodes)
BE CAREFUL: a node on which we have data must always be
coded by a stochastic link !

イロト イポト イヨト イヨト

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Code of the model in our example

To be written in a text file or in a string as below.

```
> model <-
+ "model
+ {
    for (i in 1:Ndose)
+
+
    Ł
      psick[i] < -1 - (1 - r)^{dose[i]}
+
      Nsick[i] ~ dbin(psick[i], N[i])
+
    7
+
    log10r ~ dunif(-15, -5)
+
    r <- 10^log10r
+
+ }
+ "
```

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Some properties of the BUGS language that differentiate it from ${\bf R}$

A node is univariate.

It is necessary to specify the dimensions, the indices, and **explicitely write loops** to define vectors or matrices or multidimensional arrays.

For example, we can write:

```
v[] v[i]
M[,] M[i,j]
A[,,,] A[i,j,k,1]
M[,j] v[n:m]
x[y[i]] x[2*j-1]
```

< ロ > < 同 > < 三 > < 三 >

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Let us build the code of our model step by step

A loop to define all the observations

```
model
{
  for(i in 1:Ndose)
  {
    Nsick[i] ~ dbin(psick[i], N[i])
  }
}
```

イロト イヨト イヨト イヨト

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Build of the code - add of intermediate variables

All nodes must be defined in the model except covariables. The order of lines does not matter.

```
model
{
    for(i in 1:Ndose)
    {
        Nsick[i] ~ dbin(psick[i], N[i])
        psick[i] <- 1 - (1 - r)^dose[i]
    }
}</pre>
```

イロト イポト イヨト イヨト

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Build of the code - add of priors

Prior distributions of parameters (here just one) must be defined outside the loop.

```
model
{
   for(i in 1:Ndose)
      Nsick[i] ~ dbin(psick[i], N[i])
      psick[i] <- 1 - (1 - r)^dose[i]</pre>
   }
  log10r ~ dunif(-15, -5)
  r <- 10^log10r
```

Directed Acyclic Graph (DAG) the BUGS language Coding of the model

Other differences between $\ensuremath{\mathsf{BUGS}}$ and $\ensuremath{\mathsf{R}}$ languages

BE CAREFUL,

the BUGS language and the R language are different,

and some differences concern the name of the distributions and their parameterization.

Refer to the user manual of JAGS or of other languages for a complete and up-to-date list of the functions and distributions. The JAGS reference manual:

http:

//sourceforge.net/projects/mcmc-jags/files/Manuals/

イロト イポト イヨト イヨト

Data and initial values MCMC Simulations

Coding of data

Coding of data is software-dependent. Here we will use **JAGS** (MCMC) and **rjags**. Data must be defined in a data list (here named data4jags).

> require(rjags)

Data and initial values MCMC Simulations

Pay attention to the consistency between the names used in the model and in the data list

- All the nodes appearing in the model but not defined in the model, so appearing only to the right of an operator, (here *dose* and *N*)
- as well as the max loop indices (here Ndose)
- and the output of the model (observed data, here *Nsick*)

must be defined in the data list.

BE CAREFUL to use the same names in the data list and the model code !

< ロ > < 同 > < 三 > < 三 >

Data and initial values MCMC Simulations

Definition of MCMC initial values

Software-dependent coding.

(described here for JAGS and rjags)

The definition of initial values is theoretically required for each input node and each chain especially for a correct use of the Gelman and Rubin statistics to appreciate the convergence of MCMCs (otherwise, for each parameter, the chains all start from the same value defined by default as a central value of its prior distribution).

Ex.

イロト イポト イヨト イヨト

Data and initial values MCMC Simulations

Simulations

Build of a model and adaptation

```
> m <- jags.model(file = textConnection(model),
+ data = data4jags, inits = ini,
+ n.chains = 3, n.adapt = 1000)
```

n.adapt (fixed by default to 1000) corresponds to the number of iterations of a phase during which the algorithm is adapted, so during which the simulated values are not yet MCMCs.

- Burnin phase
 - > update(m, 3000)
- Monitoring of simulations
 - > mc <- coda.samples(m, c("r"), n.iter = 1000)</pre>
 - > # generally one starts rather with n.iter around 5000

イロト イヨト イヨト イヨト

Data and initial values MCMC Simulations

Simulations

Build of a model and adaptation

```
> m <- jags.model(file = textConnection(model),
+ data = data4jags, inits = ini,
+ n.chains = 3, n.adapt = 1000)
```

n.adapt (fixed by default to 1000) corresponds to the number of iterations of a phase during which the algorithm is adapted, so during which the simulated values are not yet MCMCs.

Burnin phase

- > update(m, 3000)
- Monitoring of simulations

> mc <- coda.samples(m, c("r"), n.iter = 1000)</pre>

> # generally one starts rather with n.iter around 5000

イロト イヨト イヨト イヨト

Data and initial values MCMC Simulations

Simulations

Build of a model and adaptation

```
> m <- jags.model(file = textConnection(model),
+ data = data4jags, inits = ini,
+ n.chains = 3, n.adapt = 1000)
```

n.adapt (fixed by default to 1000) corresponds to the number of iterations of a phase during which the algorithm is adapted, so during which the simulated values are not yet MCMCs.

Burnin phase

> update(m, 3000)

Monitoring of simulations

> mc <- coda.samples(m, c("r"), n.iter = 1000)

> # generally one starts rather with n.iter around 5000

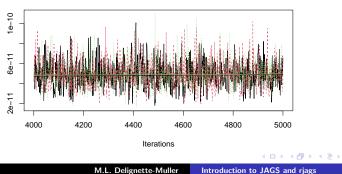
< ロ > < 同 > < 三 > < 三 >

Check of the convergence Autocorrelation Posterior distributions

MCMC trace

All chains should converge to the same limit in term of distribution (stability and overlap/good mixing of the chains). Here the mixing seems acceptable.

> plot(mc, density = FALSE)



Trace of r

Check of the convergence Autocorrelation Posterior distributions

Gelman-Rubin convergence diagnostic

For each parameter, the Gelman-Rubin diagnostic is defined by the square root of the ratio between the variance of its posterior marginal distribution and the intra-chain variance, which we expect to be 1 when convergence is reached. Gelman gives 1.1 as a maximum acceptable value for all nodes

while indicating that one should try to reach 1.00 to get precise final results from MCMCs.

```
> gelman.diag(mc)
```

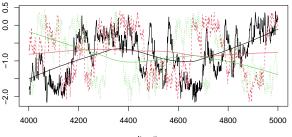
Potential scale reduction factors:

```
Point est. Upper C.I.
r 1 1.01
```

< ロ > < 同 > < 三 > < 三 >

Check of the convergence Autocorrelation Posterior distributions

Example of MCMC chains with a bad overlap



Iterations

```
> gelman.diag(mc3.3c)
```

Potential scale reduction factors:

Point est. Upper C.I. 110alpha 1.01 1.02

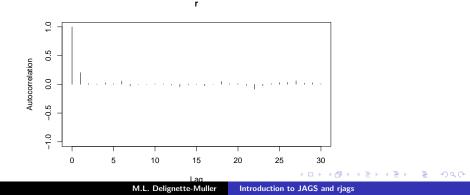
 $\langle \Box \rangle \langle \Box \rangle$

Check of the convergence Autocorrelation Posterior distributions

Autocorrelation plot

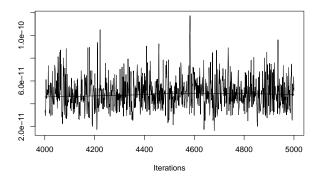
For each chain, plot of the correlation between MCMC iterations as a function of the lag between iterations. **Here the autocorrelation is very low**.

> autocorr.plot(mc[[1]])



Check of the convergence Autocorrelation Posterior distributions

Trace a chain with an acceptable low autorrelation

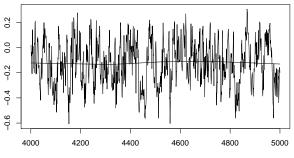


< (10) > < 3

-

Check of the convergence Autocorrelation Posterior distributions

Trace of a chain with a stronger autocorrelation that would need a thinning

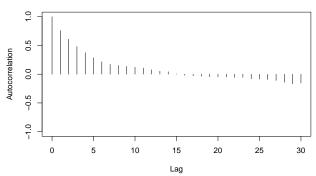


Iterations

・ロト ・回ト ・ヨト

Check of the convergence Autocorrelation Posterior distributions

Autocorrelation plot for this chain



l10alpha

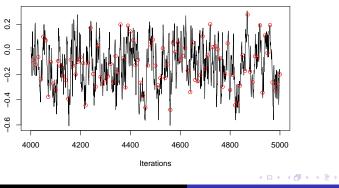
< (T) >

Э

Check of the convergence Autocorrelation Posterior distributions

Principle of thinning

With a thin of 10 one stores 1 iteration out of 10. A thinned chain may contain most of the information when taking up less space in memory.

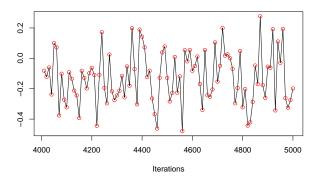


M.L. Delignette-Muller Introduction to JAGS and rjags

Check of the convergence Autocorrelation Posterior distributions

Principle of thinning (2)

After thinning: 100 out of 1000 iterations.



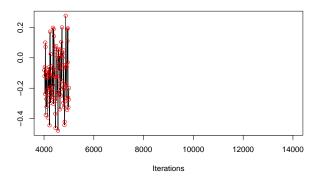
(日)、<回)、<三)、</p>

∢ ≣ ▶

Check of the convergence Autocorrelation Posterior distributions

Principle of thinning (3)

After thinning the number of iterations is low (here only 100).



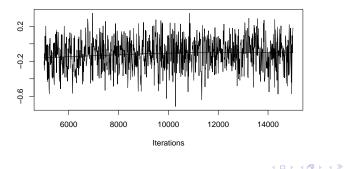
A B > 4
 B > 4
 B

Check of the convergence Autocorrelation Posterior distributions

Principle of thinning (4)

It is thus necessary to increase the initial number of iterations (here $\times 10 \rightarrow$ longer computation).

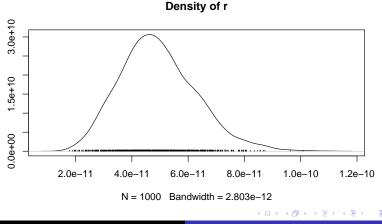
> mc3.1c <- coda.samples(m3.1c, c("l10alpha"), n.iter = 10000, thin = 10)
> plot(mc3.1c, density = FALSE, main = "")



Check of the convergence Autocorrelation Posterior distributions

Visualisation of the posterior distribution

> plot(mc, trace = FALSE)



Check of the convergence Autocorrelation Posterior distributions

Statistical summary

```
> summary(mc)
```

```
Iterations = 4001:5000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000
```

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

Mean	SD	Naive SE T	'ime-series SE
4.93e-11	1.35e-11	2.47e-13	0.00e+00

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5% 2.62e-11 4.00e-11 4.81e-11 5.76e-11 7.95e-11

イロト イヨト イヨト イヨト

Check of the convergence Autocorrelation Posterior distributions

Credibility intervals

Classically based on 2.5% and 97.5% quantiles

> summary(mc)\$quantiles

2.5% 25% 50% 75% 97.5% 2.62e-11 4.00e-11 4.81e-11 5.76e-11 7.95e-11

Less classical High Posterior Density (HPD) intervals

> HPDinterval(mc[[1]], prob = 0.95) # here for the first chain

lower upper r 2.36e-11 7.32e-11 attr(,"Probability") [1] 0.95

イロト イヨト イヨト イヨト

Check of the convergence Autocorrelation Posterior distributions

Difference between both intervals for asymmetrical posterior distributions

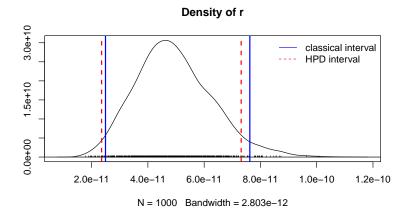


Image: A mathematical states and a mathem

Check of the convergence Autocorrelation Posterior distributions

Conclusion

Now it's your turn to play with JAGS !

To learn the technical aspects, nothing is best than practice !

You have an introductory guide to **JAGS** and rjags to help you to start and go further in particular for prediction and model validation.