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Why this reminder ?

Bayesian inference enables to easily work with any probability
distribution
⇒ handled models use various distributions.

In Bayesian inference the modeller has to explicitely write
deterministic and stochastic links of his model.
⇒ A good knowledge of classical distributions is required.

Stochastic modelling =
playing lego with
probability distributions
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Learning objectives

To know the main probability distributions to be able to build
models.

To know how to manipulate distributions using the R
language (dpqr functions).
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R handling of a probability distribution
The density function d. . .

Ex. with a Gaussian law: dnorm(x, mean, sd)

x <- seq(-3, 3, 0.1); f <- dnorm(x, mean = 0, sd = 1)

plot(x, f, type = "l", col = "red", lwd = 2)
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R handling of a probability distribution
The probability distribution function p. . .

Ex. with a Gaussian law: pnorm(q, mean, sd)

q <- seq(-3, 3, 0.1); F <- pnorm(q, mean = 0, sd = 1)

plot(q, F, type = "l", col = "red", lwd = 2)
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R handling of a probability distribution
The quantile function q. . .

Ex. with a Gaussian law: qnorm(p, mean, sd)

qnorm(0.8, mean = 0, sd = 1)

[1] 0.842
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R handling of a probability distribution
The quantile function q. . .

Ex. with a Gaussian law: qnorm(p, mean, sd)

p <- seq(0, 1, 0.01); Q <- qnorm(p)

plot(p, Q, type = "l" , col = "red", lwd = 2)
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R handling of a probability distribution
The random generator function r. . .

Ex. with a Gaussian law: rnorm(n, mean, sd)

sample <- rnorm(500, mean = 0, sd = 1)

hist(sample, col = "red")

Histogram of sample
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Bernoulli and binomial distributions
Geometric distribution
Negative binomial distribution

Bernoulli process and distribution

Discrete probability distri-
bution of Z , the variable
coding for a success
(ex.: 1 if the ball is red) :

Z ∼ Bern(p)

with p the success probabil-
ity (here the proportion of red
balls).
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Bernoulli and binomial distributions
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Negative binomial distribution

Bernoulli process and binomial distribution

Discrete probability distribution of
R, the number of success among
n random draws:

R ∼ Binom(p, n)

Asymptotic properties:

Binom(p, n)→ Poisson(np)
for large n

Binom(p, n)→
N(np,

√
np(1− p))

for large np and n(1− p)
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Binomial distribution in R
dbinom(x, size = n, prob = p)

x <- 0:40

#

# n = 10, p = 0.05

f <- dbinom(x, size = 10, prob = 0.05)

plot(x, f, type = "h", col = "blue")

#

# n = 10, p = 0.5

f <- dbinom(x, size = 10, prob = 0.5)

points(x, f, type = "h", col = "orange")

#

# n = 60, p = 0.5

f <- dbinom(x, size = 60, prob = 0.5)

points(x, f, type = "h", col = "green")
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Geometric distribution

For the same Bernoulli process (success probability p),
with T the number of random draws needed to have one
succes
(T − 1 is the number of failures before one succes) :

T − 1 ∼ Geom(p)
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Geometric distribution in R
dgeom(x, prob = p)

x <- 0:100

#

# p = 0.5

f <- dgeom(x, prob = 0.5)

plot(x, f, type = "h", col = "blue")

#

# p = 0.1

f <- dgeom(x, prob = 0.1)

points(x, f, type = "h", col = "orange")
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Negative binomial distribution

For the same Bernoulli process (success probability p),
with T the number of random draws needed to have s succes
(T − s is the number of failures before s succes)

if the last draw is a success (we stop draws at s success):

T − s ∼ NegBin(s, p)

if the last draw is a success or a failure (we count s success
and we want to know the distribution of the number of draws)
:

Tbis − s ∼ NegBin(s + 1, p)
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Negative binomial distribution in R
dnbinom(x, size = s, prob = p)

x <- 0:100

#

# s = 1, p = 0.1

f <- dnbinom(x, size = 1, prob = 0.1)

plot(x, f, type = "h", col = "orange")

#

# s = 5, p = 0.1

f <- dnbinom(x, size = 5, prob = 0.1)

points(x, f, type = "h", col = "green")
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Exponential distribution
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Poisson distribution on an example from microbiology

Distribution of R the number
of cells in v :
By analogy with the Bernoulli pro-
cess, with cells randomly placed in
V , a success if the cell is in v and
n draws with a success probability
= v

V ,
R ∼ Binom(p = v

V , n)
Binom(p, n)→ Pois(np) (n large)
R → Pois(λ = n × v

V )
Asymptotic properties:
Pois(λ)→ N(λ,

√
λ) for large λ

Note that λ is both the mean and the variance of the distribution.
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Poisson process - classical definition

Number of occurences of an event in a time interval,
with p the probability of this event in a small time interval

proportional to the interval size,

independent from the occurence of the same event in
another time interval (as soon as there is no overlap of both
intervals ).

Distribution of N the number of occurences of the event in the
interval δt,

N ∼ Pois(λ = δt × I )

with I named the intensity of the process.
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Poisson distribution in R
dpois(x, lambda = λ)

x <- 0:10

#

# lambda = 0.1

f <- dpois(x, lambda = 0.1)

plot(x, f, type = "h", col = "blue")

#

# lambda = 1

f <- dpois(x, lambda = 1)

points(x, f, type = "h", col = "orange")

#

# lambda = 5

f <- dpois(x, lambda = 5)

points(x, f, type = "h", col = "green")
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Exponential distribution

For a Poisson process of mean λ
(λ = mean number of events per time, surface or volume unit),
x the time, surface or volume needed to observe one event:

x ∼ Exp(λ)

The mean of this distribution is 1
λ and its variance is 1

λ2 .
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Exponential distribution in R
dexp(x, rate = λ)

x <- seq(0, 5, 0.1)

#

# lambda = 0.5

f <- dexp(x, rate = 0.1)

plot(x, f, type = "l", col = "blue",

ylim = c(0,2))

#

# lambda = 1

f <- dexp(x, rate = 1)

lines(x, f, col = "orange")

#

# lambda = 5

f <- dexp(x, rate = 5)

lines(x, f, col = "green")
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Gamma distribution

For the same Poisson process of mean λ
x the time, surface or volume needed to observe α events:

x ∼ Gamma(α, λ)

α is the shape parameter,
β = 1

λ is the scale parameter.
The mean of this distribution is α

λ and its variance is α
λ2 .
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Gamma distribution in R
dgamma(x, shape = α, rate = λ)

x <- seq(0, 10, 0.1)

#

# alpha = 1, lambda = 1

f <- dgamma(x, shape = 1, rate = 1)

plot(x, f, type = "l", col = "blue")

#

# alpha = 2, lambda = 1

f <- dgamma(x, shape = 2, rate = 1)

lines(x, f, col = "orange")

#

# alpha = 5, lambda = 1

f <- dgamma(x, shape = 5, rate = 1)

lines(x, f, col = "green")
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Go back to the negative binomial distribution

The negative binomial distribution is classically used to model
overdispersion in the Poisson model.
The negative binomial distribution is also called the
Gamma-Poisson, as it corresponds to the mixture of a
Poisson distribution and a Gamma distribution:
Poisson distribution of parameter λ, with λ following a Gamma
distribution.
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Overview of distributions based on stochastic processes

Bernoulli process
success for one draw : Bernoulli distribution
number of success for n draws with replacement: binomial
distribution
number of failures before 1 success: geometric distribution
number of failures before s success: negative binomial
distribution

Poisson process
number of cells in a small volume: Poisson distribution
volume to observe one cell: exponential distribution
volume to observe α cells: gamma distribution
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Normal (Gaussian) distribution

Often used especially due to the central limit theorem:

x ∼ N(µ, σ)

BE CAREFUL, do not forget it is defined on ]−∞,+∞[ and thus
can generate negative values even with a small standard deviation
in comparison to the mean, a soon as the number of random draws
is high (truncation in simulation may be necessary in some cases).
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Normal distribution in R
dnorm(x, mean = µ, sd = σ)

x <- seq(-3, 3, 0.1)

#

# mu = 0, sigma = 1

f <- dnorm(x, mean = 0, sd = 1)

plot(x, f, type = "l", col = "blue",

ylim = c(0, 0.91))

#

# mu = 1, sigma = 1

f <- dnorm(x, mean = 1, sd = 1)

lines(x, f, col = "orange")

#

# mu = 1, sigma = 0.5

f <- dnorm(x, mean = 1, sd = 0.5)

lines(x, f, col = "green")
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Lognormal distribution

Asymetrical positive distribution often used when x is varying on
different orders of magnitude (e.g. 102, 103, 109, . . ., as a
microbial concentration for example)

x ∼ LN(µl , σl) ⇔ ln(x) ∼ N(µl , σl)

BE CAREFUL, parameters of the lognormal distribution, µl and σl ,
correspond to mean and standard deviation in the natural
logarithm scale.
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Lognormal distribution in R
dlnorm(x, meanlog = µl, sdlog = σl)

x <- seq(0, 10, 0.1)

#

# mu = 0, sigma = 1

f <- dlnorm(x, mean = 0, sd = 1)

plot(x, f, type = "l", col = "blue")

#

# mu = 1, sigma = 1

f <- dlnorm(x, mean = 1, sd = 1)

lines(x, f, col = "orange")

#

# mu = 1, sigma = 0.5

f <- dlnorm(x, mean = 1, sd = 0.5)

lines(x, f, col = "green")
0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

f

M.L. Delignette-Muller Main probability distributions



Bernoulli process
Poisson process

Other classical distributions

Normal and lognormal distributions
Student (and Cauchy) distributions
Beta distribution

Student distributions

Symetrical distributions defined on ]−∞,+∞[ with heavy tails,
heavier than those of the normal distribution for low degrees of
freedom ν:

x ∼ T (µ, σ, ν)

The Cauchy distribution is the one with the heaviest tails
(ν = 1).
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Student distributions in R with µ = 0 et σ = 1
dt(x, df = ν)

x <- seq(-4, 4, 0.1)

#

# nu = 100 - close to normal distribution

f <- dt(x, df = 100)

plot(x, f, type = "l", col = "blue")

#

# nu = 5

f <- dt(x, df = 5)

lines(x, f, col = "orange")

#

# nu = 1 - Cauchy distribution

f <- dt(x, df = 1)

# equivalent alternative

f <- dcauchy(x, location = 0, scale = 1)

lines(x, f, col = "green")

−4 −2 0 2 4
0.

0
0.

1
0.

2
0.

3
0.

4

x

f

M.L. Delignette-Muller Main probability distributions



Bernoulli process
Poisson process

Other classical distributions

Normal and lognormal distributions
Student (and Cauchy) distributions
Beta distribution

Beta distribution

Flexible distribution defined on ]0, 1[,
symetrical only if both parameters are identical.

x ∼ Beta(α, β)

Its mean is α
α+β and its variance αβ

(α+β)2(α+β+1)
.

The beta(1, 1) distribution corresponds to the uniform distribution
Unif(0,1).
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Beta distribution in R
dbeta(x, shape1 = α, shape2 = β)

x <- seq(0, 1, 0.01)

# alpha = 1, beta = 1 - uniform distribution

f <- dbeta(x, shape1 = 1, shape2 = 1)

plot(x, f, type = "l", col = "blue",

ylim = c(0,5))

f <- dbeta(x, shape1 = 0.5, shape2 = 0.5)

lines(x, f, col = "black")

f <- dbeta(x, shape1 = 1, shape2 = 2)

lines(x, f, col = "orange")

f <- dbeta(x, shape1 = 2, shape2 = 1)

lines(x, f, col = "orange", lty = 2)

f <- dbeta(x, shape1 = 5, shape2 = 1)

lines(x, f, col = "green")

f <- dbeta(x, shape1 = 5, shape2 = 2)

lines(x, f, col = "purple")

f <- dbeta(x, shape1 = 5, shape2 = 0.2)

lines(x, f, col = "red")
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Overview of previous distributions

Distributions based on the Gaussian one
normal / Gaussian
lognormal
defined on ]0; +∞[

Distributions based on the Student one
Student
Cauchy
Student distribution with the degree of freedom equal to one
(distribution with heavy tails)

Beta distribution
defined on ]0; 1[ and very flexible
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It is good to know those classical distributions !

The knowledge of those few classical distributions and
stochastic processes will help you to build and implement

models in the context of Bayesian inference,
but could also help you to prevent misuses of classical models

in frequentist inference.
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