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Introduction



Definition of few terms we will use for regression

The dependent variable = the outcome

Independent variables = input variables = regressors =
predictors

▶ Independent variable(s) of interest (e.g. the treatment in a
clinical trial)

▶ Covariates = confounding variables or factors =
independent variables that may influence the outcome but are
not of direct interest (the term factor is used for categorial
variables)



Definition of few terms we will use for risk assessment

Risk factor = risk determinant = something that increases the
chance of developing a disease
Definition found on https:
//www.cancer.gov/publications/dictionaries/cancer-terms/def/ risk-factor .

Implicit causal interpretation: alteration of the factor ⇒
alteration of the outcome

Potential leverage to reduce the risk if it is controllable.

̸=

Risk marker

There is an association between the marker and the outcome,
but an alteration of the marker will not necessarily affect the
outcome.

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/risk-factor
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/risk-factor


Main preliminar questions to build a model

▶ What is the outcome ? The choice of the type of model
depends on the nature of the data.

▶ What are the relevant input variables? We should include
the main ones (to avoid confusion bias) but not too many
(to avoid a too strong uncertainty on coefficients that would
make them useless), and limiting the collinearity between
input variables.

▶ What is the expected relationship between each input
and the outcome? Is the linearity assumption reasonable for
quantitative input variables?

▶ What are the potential interactions? Which are the inputs
that may have an interaction effect on the outcome?

▶ What is the purpose of modeling: explicative or
predictive? To identify risk factors or risk markers?



Rationale for our presentation plan

1. Description of the two most popular models: their
formulation, their hypotheses, the interpretation of their
coefficients.

2. Selection of input variables: why it is necessary, the
different strategies proposed and used for the selection of
input variables.

3. Model building in a risk assessment perspective: for what
purpose ? limits of the approach ?



Description of the two most popular models



The linear model



The linear model: formalization and interpretation
One continuous outcome Y and one or more continuous and/or
categorial input variables coded by Xk ,

Each categorial variable with p categories is associated to p − 1 dummy
variables Xk coding for the membership of each observation to the p
groups except the reference one.

Yi = β0 + β1X1i + β2X2i + · · · + βkXki + · · · + ϵi

with ϵi ∼ N(0, σ)
Deterministic part: linear link
Stochastic part : Gaussian model

Interpretation of the regression coefficients:

▶ For continuous inputs: βk estimates the change in the
outcome corresponding to a unit change in the input

▶ For categorial inputs: βk estimates the difference of the
mean in group k to the mean in the reference group



The linear model after log transformation of the outcome

ln(Yi) = β0 + β1X1i + β2X2i + · · · + βkXki + · · · + ϵi

⇔ Yi = eβ0 × eβ1X1i × eβ2X2i × · · · × eβkXki × · · · × eϵi

Interpretation of the regression coefficients:

▶ For continuous inputs: eβk can be traduced as a
multiplicative effect on the outcome corresponding to a
unit change in the input

▶ For categorial inputs: eβk can be traduced as a
multiplicative effect in group k by comparison to the
reference group



Go back to our tick example
dtot <- read.table("DATA/Milne1950.txt", header = TRUE)
str(dtot)

## ’data.frame’: 100 obs. of 3 variables:
## $ rel_hum : int 0 50 70 85 95 0 50 70 85 95 ...
## $ surv_time : int 7 7 22 15 38 9 9 23 22 48 ...
## $ temperature: int 5 5 5 5 5 5 5 5 5 5 ...

# replacement of 0% humidity by 10%
# as in the paper Wongnak et al. 2022
dtot$rel_hum[dtot$rel_hum == 0] <- 10

# add of the log tranformed survival time
dtot$log_surv_time <- log(dtot$surv_time)
dtot$temperatureF <- as.factor(ifelse(dtot$temperature < 15,

"cold", "hot"))
# Exclusion of the driest condition
dhum <- subset(dtot, rel_hum > 10)



Plot of data

ggplot(data = dhum, aes(x = rel_hum, y = log_surv_time,
col = temperatureF)) + geom_jitter(width = 2)
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Fit of a model with the relative humidity as quantitative
and the temperature as a categorial variable

(mancova <- lm(log_surv_time ~ rel_hum + temperatureF,
data = dhum))

##
## Call:
## lm(formula = log_surv_time ~ rel_hum + temperatureF, data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperatureFhot
## -2.1950 0.0768 -0.2452

# coefficients traduced in multiplicative factors
exp(coef(mancova)[2:3])

## rel_hum temperatureFhot
## 1.080 0.783



Plot of the coefficients as additive effects on Y log scale
To use the same scale for all the coefficients, the βk associated to
continuous inputs may be multiplied by 2 × SD(Xk) as below.

Interpretation: outcome change for a change of 2 standard
deviations of the input.

plot_model(mancova, type = "std2")
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Plot of the coefficients as multiplicative effects on Y raw
scale

plot_model(mancova, type = "std2", transform = "exp")
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An example with many continuous and categorial input
variables

Pankova et al. 2018. Early weight gain after stopping smoking:
a predictor of overall large weight gain? A single-site
retrospective cohort study. BMJ open, 8(12), e023987.

A study based on 1050 patients who stopped smoking with a linear
model linking a continuous outcome (relative change in weight 1
year after smoking cessation) with many various input variables.

http://dx.doi.org/10.1136/bmjopen-2018-023987
http://dx.doi.org/10.1136/bmjopen-2018-023987
http://dx.doi.org/10.1136/bmjopen-2018-023987


Try to interpret the reported results



Extracts from the abstract

Results

The regression coefficient per 1% rise in the first 3 months was
+0.13% (95% CI −0.04% to 0.30%). In addition, lower body mass
index was associated with greater weight gain, while using nicotine
replacement therapy was associated with less weight gain at 1-year
follow-up.

Conclusions

People who stop smoking and gain a larger amount of weight early
after quitting are not more likely to gain excessively at 1 year.

What type of plot could help us to interprete those estimations ?



Another similar example presented using a forest plot

Petrullo et al. 2022. The glucocorticoid response to environmental
change is not specific to agents of natural selection in wild red
squirrels. Hormones and Behavior, 146, 105262.

https://doi.org/10.1016/j.yhbeh.2022.105262
https://doi.org/10.1016/j.yhbeh.2022.105262
https://doi.org/10.1016/j.yhbeh.2022.105262


Another similar example presented using a forest plot -
Figure 5



Another similar example presented using a forest plot -
Figure 5 caption



The logistic model for a binary outcome



The logistic model for a binary outcome

One binary outcome Z and one or more continuous and/or
categorial input variables coded by Xk ,

Stochastic part: Zi ∼ Bernoulli(pi)

Deterministic part:

logit(pi) = ln( pi
1−pi

) = β0 + β1X1i + β2X2i + · · · + βkXki + · · ·

⇔ pi
1−pi

= oddi = eβ0 × eβ1X1i × eβ2X2i × · · · × eβkXki × · · ·

Interpretation of the regression coefficients:

▶ For continuous inputs: eβk can be traduced as a
multiplicative effect on the odd = odds ratio (OR)
corresponding to a unit change in the input

▶ For categorial inputs: eβk can be traduced as the odds ratio
(OR) for group k by comparison to the reference group



Take the example of tick survival by studying the survival
or not after 100 days

ggplot(data = dhum, aes(x = rel_hum, y = surv_time,
col = temperatureF)) + geom_jitter(width = 2) +
geom_hline(yintercept = 100)
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Fit of a GLM (logistic regression)

dhum$survabove100days <- as.factor(dhum$surv_time > 100)
(mlogis <- glm(survabove100days ~ rel_hum + temperatureF,

family = "binomial", data = dhum))

##
## Call: glm(formula = survabove100days ~ rel_hum + temperatureF, family = "binomial",
## data = dhum)
##
## Coefficients:
## (Intercept) rel_hum temperatureFhot
## -19.831 0.223 0.520
##
## Degrees of Freedom: 79 Total (i.e. Null); 77 Residual
## Null Deviance: 97.7
## Residual Deviance: 47.5 AIC: 53.5



Estimated coefficients

# Coefficients
summary(mlogis)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -19.831 5.1383 -3.859 0.000114
## rel_hum 0.223 0.0576 3.866 0.000110
## temperatureFhot 0.520 0.7280 0.715 0.474846

# Effects traduced in odds ratios
exp(summary(mlogis)$coefficients[2:3])

## [1] 1.25 1.68



Plot of the coefficients after exponential transformation of
them to have ORs

plot_model(mlogis)
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Plot of the coefficients after 1/multiplication by
2 × SD(Xk) and 2/exponential transformation

plot_model(mlogis, type = "std2")
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Now look at some logistic regression results in papers
Risk factors associated to leptospirosis

Hinjoy et al. 2019. Environmental and behavioral risk factors for severe
leptospirosis in Thailand. Tropical medicine and infectious disease, 4(2), 79. T4

Dung et al. 2022. A case–control study of agricultural and behavioral factors
associated with leptospirosis in Vietnam. BMC Infectious Diseases, 22(1), 1-8.
T2 and 4

Risk factors associated to HUS on 411 STEC strains collected on patients

De Rauw et al. 2019. Risk determinants for the development of typical
haemolytic uremic syndrome in Belgium and proposition of a new virulence
typing algorithm for Shiga toxin-producing Escherichia coli. Epidemiology &
Infection, 147. T2

Risk factors associated to STEC positivity of farms

Henry et al. 2017. British Escherichia coli O157 in Cattle Study (BECS): to
determine the prevalence of E. coli O157 in herds with cattle destined for the
food chain. Epidemiology & Infection, 145(15), 3168-3179. T2

Patterson et al. 2022. Risk factors of Shiga toxin-producing Escherichia coli in
livestock raised on diversified small-scale farms in California. Epidemiology &
Infection, 150. T4

https://doi.org/10.3390/tropicalmed4020079
https://doi.org/10.3390/tropicalmed4020079
https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268822001005
https://doi.org/10.1017/S0950268822001005
https://doi.org/10.1017/S0950268822001005


Hinjoy et al. 2019 - risk factors associated to leptospirosis



Dung et al. 2022 - risk factors associated to leptospirosis



Dung et al. 2022 - risk factors associated to leptospirosis



De Rauw et al. 2019 - risk factors associated to HUS on
411 STEC strains collected on patients



De Rauw et al. 2019 - zoom on patient age

What is the reference class for “patient age” ?

In the Supplemental Table 1 we can see that it is [19-44] years is
the reference category and that three other categories are missing
in Table 2. Only significant coefficients are reported even for one
categorial input with several categories (a rather bad idea !).



Henry et al. 2017 - risk factors associated to E. coli O157
positivity of farms

It is explained elsewhere in the paper that “cattle 12-30 months” is
a quantitative input corresponding to the total number of cattle in
this age class.



Patterson et al. 2022 - risk factors associated to STEC
positivity of farms

Can we say that having multiple species sharing a same barn
multiplies by 6.23 the risk for a farm to be STEC positive ?



Do not confound odds ratios and risk ratios

Coefficients estimated by logistic regression are odds ratios

between two conditions k and 0 (reference): OR =
pk

1−pkp0
1−p0

A more intuitive statistics is risk ratio: RR = pk
p0

Relation between OR and RR: OR = RR × 1−p0
1−pk

OR is a good approximation of RR only if pk and p0 are close
to 0 (and/or pk and p0 close together so RR close to one).

If this is not the case the OR is exaggerating the RR.

(If pk > p0, RR > 1 and 1 − p0 > 1 − pk so 1−p0
1−pk

> 1 If pk < p0,
RR < 1 and 1 − p0 < 1 − pk so 1−p0

1−pk
< 1)

BE CAREFUL ! Interpretation of ORs as RRs is a very
common error.



A reference that shows the impact of this common error
Sheldrick et al. 2017. Math matters: how misinterpretation of odds ratios and
risk ratios may influence conclusions. Academic Pediatrics, 17(1), 1-3.

https://doi.org/10.1016/j.acap.2016.10.008
https://doi.org/10.1016/j.acap.2016.10.008


Selection of input variables



But why do we need to limit the number of input variables?



Let us look at in-field data collected on Nile monitors

An example from Ciliberti et al. 2011.
Ciliberti et al. 2011. The Nile monitor (Varanus niloticus; Squamata: Varanidae) as a sentinel species for lead and
cadmium contamination in sub-Saharan wetlands. Science of the Total Environment, 409(22), 4735-4745.

Nile monitors (large African lizards) were captured in different
areas of Africa. The lead content in their kidneys was determined
and different morphometric parameters were measured on these
animals. We wish to build a model describing the decimal
logarithm of the lead content (log10Pb) as a function of the
variables sex (sex), the area of capture (site), chosen to
represent gradient of contamination level), the fat somatic index
(FS), the snout-vent length (in log10 log10SVL) and the body
mass (in log10 log10BM).

Fit the corresponding linear model (neglecting potential
interactions here for sake of simplicity) and carefully look at the
results.



Importation of the data
dNM <- read.table("DATA/Nilemonitor.txt", header = TRUE,

stringsAsFactors = TRUE)
str(dNM)

## ’data.frame’: 71 obs. of 6 variables:
## $ sex : Factor w/ 2 levels "female","male": 2 2 2 2 2 2 1 2 2 1 ...
## $ site : Factor w/ 4 levels "dif","fla","nia",..: 4 4 4 4 4 4 4 4 4 4 ...
## $ log10BM : num -0.108 0.373 0.25 0.334 0.491 ...
## $ log10SVL: num 1.51 1.66 1.65 1.67 1.73 ...
## $ FS : num 0.0526 0.0441 0.0826 0.0532 0.0529 ...
## $ log10Pb : num 2.04 1.3 2.14 1.43 2.08 ...

xtabs(data = dNM, ~ sex + site)

## site
## sex dif fla nia nio
## female 17 5 3 5
## male 15 9 4 13



Fit of the model

mNM <- lm(log10Pb ~ sex + site + log10BM + log10SVL + FS, data = dNM)
summary(mNM)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5724 3.2317 0.7960 4.29e-01
## sexmale -0.2491 0.0651 -3.8256 3.02e-04
## sitefla -0.6045 0.0698 -8.6573 2.54e-12
## sitenia -0.1545 0.0988 -1.5639 1.23e-01
## sitenio -0.5859 0.0652 -8.9875 6.81e-13
## log10BM -0.1634 0.6681 -0.2445 8.08e-01
## log10SVL 0.0926 2.0242 0.0457 9.64e-01
## FS 0.1603 1.5182 0.1056 9.16e-01



Forest plot of the coefficients

plot_model(mNM, type = "std2")
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Carefully look at the estimated coefficients for log10BM,
log10SVL and FS.

▶ Do their sign correspond to what is expected ?
▶ To answer look at the bivariate correlations between each of

those three model inputs and log10Pb.
▶ To find an explanation look at the pairwise correlations

between those inputs.



Bivariate correlations between log10Pb and the three
inputs.

par(mfrow = c(2,2)); par(mar = c(4, 4, 1, 1))
plot(log10Pb ~ log10BM, data = dNM, pch = 16)
plot(log10Pb ~ log10SVL, data = dNM, pch = 16)
plot(log10Pb ~ FS, data = dNM, pch = 16)
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What are the expected signs of the three coefficients ?
cor(dNM$log10Pb, dNM$log10BM)

## [1] -0.415

cor(dNM$log10Pb, dNM$log10SVL)

## [1] -0.362

cor(dNM$log10Pb, dNM$FS)

## [1] 0.131

▶ negative for log10BM.
▶ negative for log10SVL. Why isn’t it negative ?
▶ positive for FS.

coef(mNM)[6:8]

## log10BM log10SVL FS
## -0.1634 0.0926 0.1603



Pairwise correlations between those inputs
par(mar = c(1, 1, 1, 1)); pairs(dNM[, 3:5])
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Collinearity between input variables (here log10BM and log10SVL)
not only increases the uncertainty of the estimates, but also makes
their interpretation meaningless.



But cannot we use only bivariate analyses ?

Comparison of the estimations with and without the sex as an
input in the previous example.

mNMsexsite <- lm(log10Pb ~ sex + site, data = dNM)
mNMsite <- lm(log10Pb ~ site, data = dNM)
coef(mNMsexsite)[3:5]

## sitefla sitenia sitenio
## -0.626 -0.187 -0.607

coef(mNMsite)[2:4]

## sitefla sitenia sitenio
## -0.673 -0.215 -0.677

No. It is especially important to take into account the effect of potential
confounding variables on observational data.



Conclusion on this rather simple example (in comparison to
realistic examples in epidemiology)

▶ It is important to prevent introducing collinear inputs in a
model.

▶ More generally we need a strategy to choose inputs to
include in a model.



Comparison of models using information criteria



Comparison of models using information criteria

▶ Various strategies are proposed, often based on a predictive
perspective.

▶ Some are based on hypothesis tests for comparing nested
models.

▶ Some are based on information criteria (the most popular
being the Akaike’s one : AIC). Based on their AIC values,
any number of models can be ranked, whatever they are
nested or not.



Likelihood and deviance

The likelihood is generally expressed in log:

logLik = ln(Pr(y | β, σ2))

The deviance is twice the difference in likelihood between the
fitted model and the saturated model (perfect model exactly
describing the data)

Dev = −2logLik(model) + 2logLik(saturated_model))

Dev = −2logLik(model)

if we consider the loglikelihood of the saturated model equal to 1.



Is the model with the smallest deviance always better ?

NO

Including new input variables in a model always decreases
the deviance,

▶ but also increases the complexity of the model,
▶ and so increases the uncertainty on the parameter

estimates,
▶ decreases its robustness to outliers,
▶ and so decreases its ability to predict new data.

So a compromise must be found: build parsimonious models,
with just the right number of input variables to well fit the data.



Aikake Information Criterion (AIC)

Information criteria were proposed to help us find a balance
between goodness-of-fit and complexity, to build parsimonious
models.

The most popular one is the Akaike’s information criterion
(AIC) in which the deviance is penalized by twice the number of
estimated parameters p :

AIC = −2 × logLik + 2 × p

Given a set of models, the one with the smaller AIC will be
preferred.



Other popular information criteria

The AIC corrected for small sample size

A correction for sample size (n) is recommended when n
p < 40.

AICc = −2 × logLik + 2 × p + 2p(p + 1)
n − p − 1

Bayesian Information Criterion

BIC = −2 × logLik + ln(n) × p

As its penalization for complexity is stronger, it tends to select
simpler models than the AIC.



Origin of the AIC

AIC was created to select the best models in a predictive purpose.

The penalization of the deviance in the AIC definition is here just
to correct for the underestimation of the error expected in
prediction with this model, as the deviance is calculated on the
data used for fitting the model (and not on new data - external
validation).

So the challenge of the selection of variables using the AIC is to
select the smallest number of input variables that best predicts the
outcome.



Comparison of AIC values using R - Ixodes ricinus data
Let us take as an example the Ixodes ricinus data (Milne 1950) on
which we introduced the linear model.

dtot <- read.table("DATA/Milne1950.txt", header = TRUE)
str(dtot)

## ’data.frame’: 100 obs. of 3 variables:
## $ rel_hum : int 0 50 70 85 95 0 50 70 85 95 ...
## $ surv_time : int 7 7 22 15 38 9 9 23 22 48 ...
## $ temperature: int 5 5 5 5 5 5 5 5 5 5 ...

# replacement of 0% humidity by 10%
# as in the paper Wongnak et al. 2022
dtot$rel_hum[dtot$rel_hum == 0] <- 10

# add of the log tranformed survival time
dtot$log_surv_time <- log(dtot$surv_time)



Plot of the data

ggplot(data = dtot, aes(x = rel_hum, y = log_surv_time,
col = temperature)) + geom_jitter(width = 2)

2

4

6

25 50 75 100
rel_hum

lo
g_

su
rv

_t
im

e

5

10

15

20

25
temperature



Comparison of several models

# null model
m0 <- lm(log_surv_time ~ 1, data = dtot)
# linear model
m1 <- lm(log_surv_time ~ rel_hum + temperature, data = dtot)
# quadratic model (response surface)
m2 <- lm(log_surv_time ~ rel_hum + I(rel_humˆ2) +

temperature + I(temperatureˆ2) + rel_hum:temperature, data = dtot)
AIC(m0, m1, m2)

## df AIC
## m0 2 382
## m1 4 296
## m2 7 232

The more complex model clearly appears as the best one for the
prediction of the survival rate. But is it too complex ?



Estimates of the most complex model

summary(m2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.457218 0.506083 6.831 8.26e-10
## rel_hum -0.067772 0.011688 -5.798 8.93e-08
## I(rel_hum^2) 0.000941 0.000100 9.403 3.42e-15
## temperature -0.113053 0.057605 -1.963 5.27e-02
## I(temperature^2) 0.001338 0.001770 0.756 4.52e-01
## rel_hum:temperature 0.000722 0.000324 2.228 2.83e-02



Is it possible to compare all the possible models ?

If the number of potential predictors is low

(here 5 predictors, rel_hum, temperature, rel_humˆ2,
temperatureˆ2 and the interaction)

it remains possible (here 25 = 32 combinations)

but if it is large, it seems difficult

(e.g. with 10 potential predictors, 210 = 1024 combinations).



Stepwise algorithms to choose the best submodel

The R popular function step() proposes three stepwise methods
to select the best model based on AIC:

▶ backward elimination: we start from the most complex
considered model, and at each step we remove the predictor
that best improves the fit, until the AIC cannot be reduced by
removing a predictor.

▶ forward selection: we start from a minimal model (with the
predictors you absolutely want to keep), and at each step we
add the predictor that best improves the fit, until the AIC
cannot be reduced by adding a predictor.

▶ both (sometimes called stepwise or bidirectional): a
combination of both algorithms, in which at each step
predictors can be added or removed, until the AIC cannot be
reduced by adding or removing a predictor.



Backward elimination from model m2

step(m2, direction = "backward", trace = FALSE)

##
## Call:
## lm(formula = log_surv_time ~ rel_hum + I(rel_hum^2) + temperature +
## rel_hum:temperature, data = dtot)
##
## Coefficients:
## (Intercept) rel_hum I(rel_hum^2)
## 3.233850 -0.067772 0.000941
## temperature rel_hum:temperature
## -0.072927 0.000722

One term was eliminated.



Forward selection from model m0 to model m2

step(m0, scope = log_surv_time ~ rel_hum + I(rel_humˆ2) +
temperature + I(temperatureˆ2) + rel_hum:temperature,

direction = "forward", trace = FALSE)

##
## Call:
## lm(formula = log_surv_time ~ I(rel_hum^2) + rel_hum + temperature +
## rel_hum:temperature, data = dtot)
##
## Coefficients:
## (Intercept) I(rel_hum^2) rel_hum
## 3.233850 0.000941 -0.067772
## temperature rel_hum:temperature
## -0.072927 0.000722

On this example backward elimination and forward selection give the same
result. But it is rarely the case when the number of potential predictors is large.



Stepwise selection from model m0 to model m2

step(m0, scope = log_surv_time ~ rel_hum + I(rel_humˆ2) +
temperature + I(temperatureˆ2) + rel_hum:temperature,

direction = "both", trace = FALSE)

##
## Call:
## lm(formula = log_surv_time ~ I(rel_hum^2) + rel_hum + temperature +
## rel_hum:temperature, data = dtot)
##
## Coefficients:
## (Intercept) I(rel_hum^2) rel_hum
## 3.233850 0.000941 -0.067772
## temperature rel_hum:temperature
## -0.072927 0.000722

The combination of both methods give the same result on this example.



Your turn to handle the step() function

Take the time to handle the step() function with the three
options,

carefully looking at the outputs given when the argument trace is
fixed to TRUE,

in order to be sure you well understand each algorithm.

You can use it on the mNM model (Nile monitor ex.)



Comparison of backward elimination results from model
mNM using AIC and BIC criteria

mNMAIC <- step(mNM, trace = FALSE)
coef(mNMAIC)[-1]

## sexmale sitefla sitenia sitenio log10BM
## -0.250 -0.605 -0.156 -0.586 -0.138

mNMBIC <- step(mNM, k = log(nrow(dNM)), trace = FALSE)
coef(mNMBIC)[-1]

## sexmale sitefla sitenia sitenio
## -0.273 -0.626 -0.187 -0.607

AIC(mNM, mNMAIC, mNMBIC)

## df AIC
## mNM 9 -10.8
## mNMAIC 7 -14.8
## mNMBIC 6 -14.7



Stepwise methods based on other criteria using R

The three algorithms can be performed based on other criteria
than AIC (other information criteria or tests for comparing nested
models)

▶ It is possible to use of step() with the BIC by fixing the
argument k to ln(n).

▶ To use tests comparing nested models (p-values) on
Gaussian linear models one can use for example the R
package olsrr (with ols_step_forward_p(),
ols_step_backward_p() or ols_step_both_p() functions)

▶ To use the AICc one can use the R package MuMIn: its
dredge() function uses AICc by default.

Try to compare backward elimination from model mNM
using AIC and BIC criteria



Limits of stepwise selection of input variables

▶ What criterion to choose ?
▶ What algorithm to choose (backward elimination, forward selection,

both)? Even using one criterion, in the more general case the three
approaches do not necessarily propose the same best model.

▶ Sometimes the AIC difference between two models is rather small (we
often consider that an ∆AIC < 2 is not demonstrative). Is thus such an
algorithm relevant ?

▶ The best model may contain non-significant coefficients.
▶ The best model may contain meaningless coefficients.
▶ The best model regarding the AIC does not necessarily respect the

conditions of use that must be carefully checked.
▶ We must keep in mind that based on the AIC we will select the model

that best approximates the data using a minimal number of input
variables. But is the model useful in an explanatory perspective ?



What are the proposed strategies ?



In “Data analysis using regression and
multilevel/hierarchical models” - Gelman & Hill 2006)

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge
university press. more than 16000 Google Scholar citations in Oct. 2022

1. Include all variables that might be expected to be important in
predicting the outcome

2. Consider the possibility of gathering some inputs in one predictor, for
example calculated as a score from several inputs.

3. Consider including interactions for inputs having large effects.
4. Select the predictors to remove following those rules:

▶ exclude a predictor if its coefficient is non significant and has not the
expected sign.

▶ think hard about coefficients with significant but unexpected sign.
▶ generally keep coefficient with expected sign even if non significant.
▶ always keep a coefficient that is significant and with the expected sign.

In other parts of the book the authors give various methods to check the final
model, especially using predictive checking based on data simulation.



In “Applied logistic regression” (Hosmer & Lemeshow
2013)

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley
& Sons. more than 71000 Google Scholar citations in Oct. 2022

1. Bivariate analyses - keep all variables associated with the outcome
(p-value < 0.25)

2. Multivariate analysis with variables selected in step 1 and all variables
of known biological importance. Do not recommend nor stepwise nor
best subsets selection of variables: the “analyst must be conscious that
such methods can yield a biological implausible model or select irrelevant,
or noise, variables”.

3. For each coefficient, compare its values in Steps 1 and 2, and eliminate
predictors for which coefficients are of markedly different orders of
magnitude. Then compare the simplified model to the complete model
using comparison of nested models. (iterative process). Try to
reintroduce in the model each variable not selected in step 1.

4. Check the conditions of use (linearity for continuous inputs, appropriate
categories for discrete variables)

5. Check for interactions among the variables in the model, adding each
plausible interaction one at a time. And check the goodness-of-fit of the
final model.



In Bursac et al. 2008 (a highly quoted paper in medicine)

Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection of variables in logistic
regression. Source code for biology and medicine, 3(1), 1-8. 2695 Google Scholar citations in Oct. 2022

1. Bivariate analyses - keep all variables associated with the outcome
(p-value < 0.25)

2. Multivariate analysis with variables selected in step 1.
3. Eliminate predictors that are non significant (p-value > 0.1) and not

a confounder (assessed by checking that its elimination does not change
the estimation of other coefficients by more than 15% or 20%) (iterative
process)

4. Try to reintroduce in the model each variable not selected in step 1
and keep it if its contribution is significant (p-value < 0.1 or 0.15).
(iterative process only concerning the reintroduction of variables)

https://doi.org/10.1186/1751-0473-3-17
https://doi.org/10.1186/1751-0473-3-17


In Harrison et al. 2018 (a highly quoted paper in ecology)
Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E., . . . & Inger, R.
(2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794.
1195 Google Scholar citations in Oct. 2022

▶ Authors prevent the use of backward selection and hypothesis tests when
the number of input variables is large and recommend the ranking of
competing models using AIC. For balanced experimental designs with
few inputs, they left the open question of which method to use between
information criteria and tests.

▶ Authors recommend “hard thinking about hypotheses” underlying the
different competing models instead of selection from all possible subsets,
so starting from only a handful of models with biological meaning and
without collinear inputs.

▶ They recommend the ranking of models based on the AIC (with
correction if needed - AICc) to define a “top model set”, taking all the
models with a ∆AIC from the best one less than 6. and the elimination
of models that are more complex versions of nested models of others
in the “top set” as AIC is known to tends toward overly complex models.

The final choice among the remaining models in the top set must be argued by
the biologist. The authors recommend the use of data simulation (powerful but
underused tool) to check the final model.

https://peerj.com/articles/4794/
https://peerj.com/articles/4794/


What are the strategies used nowadays by authors to build
models for identifying risk factors ?



To have an idea, carefully look at the statitical part of
some of the previous examples

De Rauw et al. 2019. Risk determinants for the development of typical
haemolytic uremic syndrome in Belgium and proposition of a new virulence
typing algorithm for Shiga toxin-producing Escherichia coli. Epidemiology &
Infection, 147.

Dung et al. 2022. A case–control study of agricultural and behavioral factors
associated with leptospirosis in Vietnam. BMC Infectious Diseases, 22(1), 1-8.

Henry et al. 2017. British Escherichia coli O157 in Cattle Study (BECS): to
determine the prevalence of E. coli O157 in herds with cattle destined for the
food chain. Epidemiology & Infection, 145(15), 3168-3179.

Patterson et al. 2022. Risk factors of Shiga toxin-producing Escherichia coli in
livestock raised on diversified small-scale farms in California. Epidemiology &
Infection, 150.

https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1017/S0950268818002546
https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268817002151
https://doi.org/10.1017/S0950268822001005
https://doi.org/10.1017/S0950268822001005
https://doi.org/10.1017/S0950268822001005


Conclusion of this exploration ?

There seems to be
a great variability in used approaches,

and sometimes a gap between
what is recommended and

what is really done.



Model building in a risk assessment perspective



In which perspective is the model built, inference,
prediction?



In which perspective is the model built, inference,
prediction?

▶ in a predictive perspective (the one for which information
criteria were developed)? We want the model to predict the
outcome (e.g. calculate clinical score to do a pronostic)

▶ in an explicative perspective (inference)? For a better
understanding of biological processes? We want to compare
models based on different competitive biological
hypotheses.

What are the perspectives for risk management? What are the
main risk factors? (explicative) How can I reduce the risk?
(prediction, using inputs that are the easiest to control)

Some references
Tredennick et al. 2021. A practical guide to selecting models for
exploration, inference, and prediction in ecology. Ecology, 102(6), e03336.

Mac Nally et al. 2018. Model selection using information criteria, but is the
“best” model any good? Journal of Applied Ecology, 55(3), 1441-1444.

https://doi.org/10.1002/ecy.3336
https://doi.org/10.1002/ecy.3336
https://doi.org/10.1111/1365-2664.13060
https://doi.org/10.1111/1365-2664.13060


Go back to Dung et al. 2022

Dung et al. 2022. A case–control study of agricultural and
behavioral factors associated with leptospirosis in Vietnam. BMC
Infectious Diseases, 22(1), 1-8. Tables 3 and 4

https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1186/s12879-022-07561-6
https://doi.org/10.1186/s12879-022-07561-6


Dung et al. 2022 - bivariate analyses



Dung et al. 2022 - multivarite analysis

After backward elimination based on p_values < 0.05.



Dung et al. 2022 - extracted from the paper :

“The multiple logistic regression analysis of behavior risk factors
indicated three protective factors,

▶ hand washing after using toilet,
▶ hand washing after farming/gardering,
▶ contacting with cattle and poultry.”

What comments/ideas does this example inspire in you? What
alternatives could you propose to make the analysis of those data
more convincing ?



Is it easy to draw conclusions from models fitted on
non-experimental data ?



Is it easy to draw conclusions from models fitted on
non-experimental data ?

Christenfeld et al. 2004. Risk factors, confounding, and the
illusion of statistical control. Psychosomatic medicine, 66(6),
868-875.

Westfall & Yarkoni, 2016. Statistically controlling for
confounding constructs is harder than you think. PloS one,
11(3), e0152719.

https://doi.org/10.1371/journal.pone.0152719
https://doi.org/10.1371/journal.pone.0152719
https://doi.org/10.1371/journal.pone.0152719


A realistic “toy” example

▶ Dog weight (standardized = centered and reduced): DW
▶ Owner’s weight (standardized): OW
▶ Common daily walk time (standardized): WT

With WT −→ DW and WT −→ OW as causal relationships

Simulation of data from

▶ WT ∼ N(0, 1)
▶ OW ∼ N(αOW + βOW × WT , σOW )
▶ DW ∼ N(αDW + βDW × WT , σDW )



Visualization of simulated data
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Linear model: DW as a function of OW

mOW <- lm(DW ~ OW)
summary(mOW)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.000514 0.0507 0.0101 9.92e-01
## OW 0.707517 0.0449 15.7572 8.64e-37

Of course, if we do not take into account WT in the model,
we highlight a correlation between DW and OW related to
the common causal factor WT.



Linear model: DW as a function of OW and the
confounding factor WT

mOWWT <- lm(DW ~ OW + WT)
summary(mOWWT)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0168 0.0343 0.491 6.24e-01
## OW -0.0422 0.0574 -0.735 4.63e-01
## WT -1.0584 0.0688 -15.376 1.43e-35

Taking into account the confounding factor WT, as
expected, we no longer show a significant effect of OW on
DW.

So it works ?

Yes, but would it work in real life?



But what if the available WT measurement is noisy
(realistic in real life)?

WTm ∼ N(WT , σWTm)
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Linear model: DW as a function of OW and WTm

mOWWTm <- lm(DW ~ OW + WTm)
summary(mOWWTm)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.00398 0.0419 0.0949 9.24e-01
## OW 0.29128 0.0571 5.1014 7.90e-07
## WTm -0.61306 0.0639 -9.6003 3.80e-18

Even taking into account the confounding factor WTm
(measured with some error), we show a significant effect of
OW on DW.



Another realistic case, if only a qualitative measure of WT
is used (e.g. categorized in 3 classes)

WT transformed into a categorial variable (WT3c) with three
classes:

]-4; -1], ]-1; 1], ]1; 4].
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Linear model: DW as a function of OW and WT3c

mOWWT3c <- lm(DW ~ OW + WT3c)
summary(mOWWT3c)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.942 0.1366 6.90 7.08e-11
## OW 0.324 0.0567 5.72 3.86e-08
## WT3c(-1,1] -0.909 0.1463 -6.21 3.05e-09
## WT3c(1,4] -2.119 0.2317 -9.14 7.76e-17

We still show a significant effect of OW on DW!



And if the discretization of WT is less coarse and balanced
WT transformed into a categorail variable (WT5c) with five
balanced classes, whose limits are defined by the quintiles.
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Linear model: DW as a function of OW and WT5c

mOWWT5c <- lm(DW ~ OW + WT5c)
summary(mOWWT5c)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.109 0.1247 8.90 4.08e-16
## OW 0.141 0.0613 2.31 2.21e-02
## WT5c(-0.75,-0.299] -0.678 0.1391 -4.87 2.31e-06
## WT5c(-0.299,0.165] -0.985 0.1506 -6.54 5.22e-10
## WT5c(0.165,0.743] -1.446 0.1687 -8.57 3.26e-15
## WT5c(0.743,4] -2.340 0.2121 -11.03 2.83e-22

We still show a significant effect of OW on DW!



Conclusion about the possibility of taking into account
confounding factors in a linear model

A problem of this kind is very realistic and I let you imagine the
consequences!

Taking into account the potential confounding variables in a
linear model is essential, but great caution is required when
interpreting the results of a linear model on observational data
(i.e. with uncontrolled input variables).



Conclusion



Conclusion

▶ Statistical modeling is a powerful but not perfect tool and
should be handled with great caution.

▶ There is no unique / best strategy to build a
model.Authors should be able to well describe and argue their
own strategy in order to convince the reader it is well-founded.

▶ The question of the end use of a model (explicative /
predictive) is an underlying question that we should keep in
mind while developing any type of model (also crucial in
machine learning).
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